

Minnesota State High School M athematics League
 Individual Event

2009-10 Event 4A SOLUTIONS

1. Compute the value of $\sqrt[3]{3^{5}+3^{5}+3^{5}}$.
2.

$$
\sqrt[3]{3^{5}+3^{5}+3^{5}}=\sqrt[3]{3\left(3^{5}\right)}=\sqrt[3]{3^{6}}=3^{6 / 3}=3^{2}=9 .
$$

2. The expression $(x+y)^{3}-x(x+y)^{2}-y(x+y)^{2}$ can be simplified so that it is w ritten as just a single term. Do so.
3.

The threeterms share a common factor of $(x+y)^{2}$. Factoring,

$$
\begin{aligned}
(x+y)^{3}-x(x+y)^{2}-y(x+y)^{2} & =(x+y)^{2}[(x+y)-x-y] \\
& =(x+y)^{2}[0]=0 .
\end{aligned}
$$

3. The function f is defined by $f(n)=3 \cdot f(n-1)-f(n-2)$, where n is any positive integer.

If $f(1)=1$, and $f(2)=\frac{1}{3}$, evaluate $f(7)$.
$f(7)=-7$.

$$
\begin{aligned}
& f(3)=3 \cdot f(2)-f(1)=3\left(\frac{1}{3}\right)-1=0 ; \quad f(4)=3 \cdot f(3)-f(2)=3(0)-\frac{1}{3}=-\frac{1}{3} ; \\
& f(5)=3\left(-\frac{1}{3}\right)-0=-1 ; \quad f(6)=3(-1)-\left(-\frac{1}{3}\right)=-\frac{8}{3} ; \quad f(7)=3\left(-\frac{8}{3}\right)-(-1)=-7 .
\end{aligned}
$$

4. In the equation $\frac{1-\sqrt{2}+\sqrt{3}}{1+\sqrt{2}-\sqrt{3}}=\frac{\sqrt{x}+\sqrt{y}}{2}$, both x and y are nonnegative integers.

Compute the sum $\mathrm{x}+\mathrm{y}$.

8
(Problems for this event are variations of those presented at the 1984 Coaches' Institute.)

The left side can be rationalized in a couple of ways. One possibility is:

$$
\begin{aligned}
& \frac{1-\sqrt{2}+\sqrt{3}}{1+\sqrt{2}-\sqrt{3}} \cdot\left(\frac{1+\sqrt{2}+\sqrt{3}}{1+\sqrt{2}+\sqrt{3}}\right)=\frac{1-(\sqrt{2}-\sqrt{3})}{1+(\sqrt{2}-\sqrt{3})} \cdot \frac{1+(\sqrt{2}+\sqrt{3})}{1+(\sqrt{2}+\sqrt{3})} \\
& =\frac{1+(\sqrt{2}+\sqrt{3})-(\sqrt{2}-\sqrt{3})-(2-3)}{1+(\sqrt{2}+\sqrt{3})+(\sqrt{2}-\sqrt{3})+(2-3)}=\frac{1+2 \sqrt{3}-(-1)}{1+2 \sqrt{2}+(-1)} \\
& =\frac{2+2 \sqrt{3}}{2 \sqrt{2}}=\frac{1+\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{2}+\sqrt{6}}{2} .
\end{aligned}
$$

So $x=2$ and $y=6$ (or vice versa), and $x+y=8$.

Minnesota State High School M athematics League

Individual Event

2009-10 Event 4B SOLUTIONS

Questions \#1-3 all refer to a nine-sided regular polygon that is labeled $A_{1} A_{2} . . . A_{9}$ and inscribed in a circle of radius 1 .

1. Tangents to the circle at A_{1} and A_{7} meet at point P . How long is $\overline{\mathrm{A}_{1} \mathrm{P}}$?
$\mathbf{A}_{1} \mathbf{P}=\sqrt{3}$,
or ≈ 1.732.

$$
\begin{aligned}
& m \widehat{\mathrm{~A}_{1} \mathrm{~A}_{7}}=\frac{3}{9}\left(360^{\circ}\right)=120^{\circ} \text {, so we can } \\
& \text { create a } 30-60-90 \text { triangle as shown. } \\
& \text { Radius }=1 \Rightarrow \mathrm{~A}_{1} \mathrm{P}=\sqrt{3} .
\end{aligned}
$$

2. Secants containing $\overline{A_{3} A_{9}}$ and $\overline{A_{4} A_{5}}$ meet at point Q. What (in degrees) is the measure of $\angle \mathrm{A}_{5} \mathrm{QA} \mathrm{A}_{9} ?$
$\mathbf{m} \angle \mathbf{A}_{5} \mathrm{Q} \mathbf{A}_{9}=$
60°. $\begin{aligned} & \angle \mathrm{A}_{5} \mathrm{Q} \mathrm{A}_{9} \text { subtends arcs } \widehat{\mathrm{A}_{5} \mathrm{~A}_{9}} \text { and } \widehat{\mathrm{A}_{3} \mathrm{~A}_{4}}, \text { which have measures of } 160^{\circ} \text { and } 40^{\circ}, \\ & \text { respectively. By theorem, } m \angle \mathrm{~A}_{5} \mathrm{Q} \mathrm{A}_{9}=\frac{1}{2}\left(\widetilde{\mathrm{~m}_{5} \mathrm{~A}_{9}}-m \widehat{\mathrm{~A}_{3} \mathrm{~A}_{4}}\right)=\frac{1}{2}\left(160^{\circ}-40^{\circ}\right)=60^{\circ} .\end{aligned}$
3. The secant containing $\overline{\mathrm{A}_{2} \mathrm{~A}_{9}}$ meets the extension of the diameter containing A_{8} at point R . What (in degrees) is the measure of $\angle A_{9} R A_{8}$?

$\mathrm{m} \angle \mathrm{A}_{5} \mathrm{RA}_{8}=$

10°
$\angle A_{9} R A_{8}$ subtends the arc from A_{2} to halfway between A_{3} and $A_{4}\left(60^{\circ}\right)$, and
1 $\widehat{\mathrm{A}_{8} \mathrm{~A}_{9}}\left(40^{\circ}\right)$. By theorem, $\mathrm{m} \angle \mathrm{A}_{9} R \mathrm{~A}_{8}=\frac{1}{2}\left(60^{\circ}-40^{\circ}\right)=10^{\circ}$.
4. In Figure 4, $\mathrm{m} \angle \mathrm{ABD}=120^{\circ}$ and $B C=C D=1$. A circle is drawn through C and D, tangent to $\overline{A B}$ at T. What will be the length of BT ?
$\sqrt{2}$, or
≈ 1.414.
The 120° angle isn't actually needed. Using $\triangle T O B$, $O B=\sqrt{x^{2}+r^{2}}$. Using $\triangle C O M$ (with $C M=\frac{1}{2}$), $O M=\sqrt{r^{2}-\frac{1}{4}}$. U sing $\triangle B O M$ (with $B M=\frac{3}{2}$),
$\left(\frac{3}{2}\right)^{2}+\left(\sqrt{r^{2}-\frac{1}{4}}\right)^{2}=\left(\sqrt{x^{2}+r^{2}}\right)^{2} \Rightarrow x=\sqrt{2}$.

Minnesota State High School Mathematics League Individual Event

2009-10 Event 4C SOLUTIONS

1. What is the $2010^{\text {th }}$ positive odd number?
2.

The nth positive odd number will always be 1 less than the nth positive even number (2 n). So we cal culate: $2 n-1=2(2010)-1=4020-1=4019$.
2. Find the sum of the infinite geometric series whose first two terms are $6!$ and 5 ! .

Since $(6!)\left(\frac{1}{6}\right)=5$!, the common ratio must be $\frac{1}{6}$. U sing the formula for the sum of an
864 infinite converging geometric series, $\frac{a_{1}}{1-r}=\frac{6!}{1-\left(\frac{1}{6}\right)}=\frac{6!}{\left(\frac{5}{6}\right)}=(6!)\left(\frac{6}{5}\right)=720\left(\frac{6}{5}\right)=864$.
3. The sum of the first ten terms of an arithmetic sequence is four times the sum of the first fiveterms. If the first term of the sequence is a_{1} and the common difference is d, compute the ratio $a_{1}: d$.
$a_{1}: d=1: 2$.
(M athematics Teacher, N ovember 2003)

> Sum of first 10 terms: $a_{1}+\left(a_{1}+d\right)+\left(a_{1}+2 d\right)+\ldots+\left(a_{1}+9 d\right)=10 a_{1}+45 d$
> Sum of first 5 terms: $a_{1}+\left(a_{1}+d\right)+\left(a_{1}+2 d\right)+\ldots+\left(a_{1}+4 d\right)=5 a_{1}+10 d$
> So $10 a_{1}+45 d=4\left(5 a_{1}+10 d\right)=20 a_{1}+40 d \Rightarrow 5 d=10 a_{1} \Rightarrow a_{1}: d=1: 2$
4. If $f(x)=1-\frac{1}{x}$, find the exact value of x for which $\underbrace{(f(f(f(f(f(f \ldots(f(x))))))))}_{\text {2009 applications of the function } f}=2010$.
M aybe it would be easier to start with just a few applications of f :

$$
f(f(x))=1-\frac{1}{\left(1-\frac{1}{x}\right)}=1-\frac{1}{\left(\frac{x-1}{x}\right)}=1-\frac{x}{x-1}=\frac{x-1-x}{x-1}=\frac{-1}{x-1}=\frac{1}{1-x}
$$

$x=\frac{2009}{2010}$.
$f(f(f(x)))=f\left(\frac{1}{1-x}\right)=1-\frac{1}{\left(\frac{1}{1-x}\right)}=1-(1-x)=x$. Eureka! Every three
applications of the function is a "reset"; that is, it returns the original input. If there are 2009 applications of f , we simply note that 2009 is 2 morethan a multiple of 3 . So $\underbrace{f(f(f(f(f(f(f \ldots(f(x))))))))}=f(f(x))=\frac{1}{1-x}=2010$. Solving, $x=\frac{2009}{2010}$.

Minnesota State High School Mathematics League

 Individual Event
2009-10 Event 4D SOLUTIONS

1. Give the coordinates of the center of the circle described by $x^{2}+y^{2}-12 x+10 y-38=0$.
$(h, k)=(6,-5)$.

It is sufficient to examine the x and y terms to see that in the process of completing the square, the terms $(x-6)^{2}$ and $(y+5)^{2}$ will be created.
2. Compute the area of the circle described by $x^{2}+y^{2}+2 x+6 y+3=0$.

7π,	Completing the square, $\left(x^{2}+2 x+1\right)+\left(y^{2}+6 y+9\right)+3=1+9$.
or ≈ 21.991.	$\Rightarrow(x+1)^{2}+(y+3)^{2}=7$. Since the radius squared is 7, A rea $=\pi r^{2}=\pi(7)$.

3. The asymptotes of a hyperbola are the lines $y=2 x$ and $y=-2 x$. If the hyperbola passes through the point $(9,16)$, find the x-coordinate of the hyperbola's positive x-intercept.
$x=\sqrt{17}$,
or ≈ 4.123
The center of the hyperbola must be at the origin (where the asymptotes intersect), and
since $(9,16)$ is located to the right of $(8,16)$, which lies on an asymptote, the hyperbola's branches open horizontally, with equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{(2 a)^{2}}=1$. This rearranges to $x^{2}-\frac{y^{2}}{4}=a^{2}$. Substituting $(9,16)$ yields $a^{2}=17$, so $x=+\sqrt{17}$.
4. A hyperbola has its foci on the x-axis and passes through the points $(-1,0),(2,0)$, and $(-2,1)$. Compute the x-coordinate of the right-most focus.

Since $(-1,0)$ and $(2,0)$ are on the x-axis, they must be the vertices of the hyperbola. Furthermore, the center is located at $\left(\frac{1}{2}, 0\right)$ and the hyperbola opens horizontally. So far, this gives us $\frac{\left(x-\frac{1}{2}\right)^{2}}{\left(\frac{3}{2}\right)^{2}}-\frac{y^{2}}{b^{2}}=1$. The only point we haven't
$x=\frac{1}{2}+\frac{3 \sqrt{5}}{4}$,
or
≈ 2.177.
used is $(-2,1)$, so substitute these coordinates for x and y :

$$
\frac{\left(-2-\frac{1}{2}\right)^{2}}{\left(\frac{3}{2}\right)^{2}}-\frac{1^{2}}{b^{2}}=1 \Rightarrow \frac{\left(\frac{25}{4}\right)}{\left(\frac{9}{4}\right)}-\frac{1}{b^{2}}=1 \Rightarrow \frac{25}{9}-1=\frac{1}{b^{2}} \Rightarrow b^{2}=\frac{9}{16} \Rightarrow b=\frac{3}{4}
$$

N ow use the hyperbola identity: $c^{2}=a^{2}+b^{2}=\frac{9}{4}+\left(\frac{3}{4}\right)^{2}=\frac{45}{16} \Rightarrow c=\frac{3 \sqrt{5}}{4}$.
The right-most focus is located c units right of the center, at $x=\frac{1}{2}+\frac{3 \sqrt{5}}{4}$.

Minnesota State High School M athematics League Team Event

2009-10 M eet 4
 SOLUTIONS

1. A triangle inscribed in a circle has side lengths $12,12 \sqrt{2}$, and $6 \sqrt{6}+6 \sqrt{2}$.

Compute the length of the circle's diameter.
24.
2. What is the least positive integer $\mathrm{n}>1$ for which the expression $\sqrt{1+2+3+\ldots+n}$ simplifies to an integer? (Mathematics Teacher, Oct. 2006)
$n=8$.
3. The expression $\frac{(\sqrt{3}+\sqrt{5})(\sqrt{5}+\sqrt{2})}{\sqrt{2}+\sqrt{3}+\sqrt{5}}$ can be rationalized into a single fraction whose denominator is a positive integer. Do so.
$\frac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{2}$.
4. Given $f(\theta)=(1+\cos \theta) \sqrt{\frac{\sec \theta-1}{\sec \theta+1}}$, express $f(0)+f\left(\frac{\pi}{6}\right)+f\left(\frac{\pi}{4}\right)+f\left(\frac{\pi}{3}\right)$ accurate to three places to the right of the decimal.
$\frac{1+\sqrt{2}+\sqrt{3}}{2}$, or 2.073 .
5. When the radical equation $\sqrt{x+1-2 \sqrt{x}}=15$ is solved using the typical method of squaring both sides repeatedly, two solutions are discovered for x, but one of these solutions is extraneous.
Find the value of that extraneous solution.
196.
6. A parabola is defined as the curve containing all points equidistant from a focus F and a line called the directrix. Let us define a quasi-parabola to be the curve containing all points equidistant from F and a line segment called the directrix. Find all x - and y-intercepts of the quasi-parabola with $F=(9,9)$ and directrix with endpoints $A=(3,7)$ and $B=(7,5)$.
x-int $=(22,0) ; y$-int $=(0,26) . \quad+2$ points for each correct intercept

1. U sing the Law of Cosines,

$$
\begin{aligned}
12^{2} & =(12 \sqrt{2})^{2}+(6 \sqrt{6}+6 \sqrt{2})^{2}-2(12 \sqrt{2})(6 \sqrt{6}+6 \sqrt{2}) \cos \alpha \\
144 & =288+(216+72 \sqrt{12}+72)-(144 \sqrt{12}+288) \cos \alpha \\
144 & =576+144 \sqrt{3}-(288 \sqrt{3}+288) \cos \alpha \\
\frac{-432-144 \sqrt{3}}{-288-288 \sqrt{3}} & =\frac{3+\sqrt{3}}{2+2 \sqrt{3}}\left(\frac{2-2 \sqrt{3}}{2-2 \sqrt{3}}\right)=\frac{-4 \sqrt{3}}{-8}=\frac{\sqrt{3}}{2}=\cos \alpha
\end{aligned}
$$

So $\alpha=30^{\circ}$, and since α is an exterior angle, there is an equilateral triangle of side length 12 at the circle's center. Radius $=12 \Rightarrow$ Diameter $=24$.
2. U sing change of base, $\sqrt{1+2+3+\ldots+n}=\sqrt{\frac{n(n+1)}{2}}$. Suppose this simplifies to some integer k.

Then $\frac{n(n+1)}{2}=k^{2} \Rightarrow n(n+1)=2 k^{2}$. We are looking for two consecutive integers whose product is double a perfect square...(see table)
So the first $\mathrm{n}>1$ that works is $\mathrm{n}=8$.

$\mathbf{n (n + 1)}$	$2(3)$	$3(4)$	$4(5)$	$5(6)$	$6(7)$	$7(8)$	$8(9)$
Cut in half	3	6	10	15	21	28	$\mathbf{3 6}$

3. Let $x=\sqrt{2}+\sqrt{3}+\sqrt{5}$. Then the expression can be written:

$$
\frac{(x-\sqrt{2})(x-\sqrt{3})}{x}=\frac{x^{2}-(\sqrt{2}+\sqrt{3}) x+\sqrt{6}}{x}=x-(\sqrt{2}+\sqrt{3})+\frac{\sqrt{6}}{x}=\sqrt{5}+\frac{\sqrt{6}}{x} .
$$

N ow rationalize: $\sqrt{5}+\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}+\sqrt{5}} \cdot \frac{\sqrt{2}+(\sqrt{3}-\sqrt{5})}{\sqrt{2}+(\sqrt{3}-\sqrt{5})}=\sqrt{5}+\frac{\sqrt{12}+\sqrt{18}-\sqrt{30}}{2+\sqrt{6}-\sqrt{10}+\sqrt{6}+\sqrt{10}+(3-5)}$

$$
=\sqrt{5}+\frac{\sqrt{12}+\sqrt{18}-\sqrt{30}}{2 \sqrt{6}}=\sqrt{5}+\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{2}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{2} .
$$

4. First note that $\sqrt{\frac{\sec \theta-1}{\sec \theta+1}}=\sqrt{\frac{\sec \theta-1}{\sec \theta+1}\left(\frac{\sec \theta-1}{\sec \theta-1}\right)}=\sqrt{\frac{(\sec \theta-1)^{2}}{\sec ^{2} \theta-1}}=\frac{\sec \theta-1}{\tan \theta}$. Then multiply top and bottom of by $\cos \theta$ to obtain $\frac{1-\cos \theta}{\sin \theta}$. So $\mathrm{f}(\theta)=(1+\cos \theta)\left(\frac{1-\cos \theta}{\sin \theta}\right)=\frac{1-\cos ^{2} \theta}{\sin \theta}=\frac{\sin ^{2} \theta}{\sin \theta}=\sin \theta$, and $\mathrm{f}(0)+\mathrm{f}\left(\frac{\pi}{6}\right)+\mathrm{f}\left(\frac{\pi}{4}\right)+\mathrm{f}\left(\frac{\pi}{3}\right)=0+\frac{1}{2}+\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2}=\frac{1+\sqrt{2}+\sqrt{3}}{2}$.
5. Squaring both sides yields: $(\sqrt{x+1-2 \sqrt{x}})^{2}=(15)^{2} \Rightarrow x+1-2 \sqrt{x}=225 \Rightarrow 2 \sqrt{x}=x-224$. Squaring both sides a second time yields: $4 x=x^{2}-448 x+50176 \Rightarrow x^{2}-452 x+50176$. Solving this quadratic reveals roots of 196 and 256. 256 works in the original equation; 196 doesn't.
6. A quasi-parabola looks like a section of a parabola joined to two rays. In this case, the parabola section comes nowhere near the axes, so we need only concern ourselves with the two rays. These rays lie on the perpendicular bisectors of $\overline{\mathrm{AF}}$ and $\overline{\mathrm{BF}}$. One ray emanates from $(6,8)$ with slope -3 : $y-8=-3(x-6)$, where $x \leq 6$. This has only a y-intercept, at $(0,26)$. The other ray emanates from $(8,7)$ with slope $-\frac{1}{2}: y-7=-\frac{1}{2}(x-8)$, where $x \geq 8$. This has only an x-intercept, at $(22,0)$.
