

2009-10 Event 4A SOLUTIONS

1. Compute the value of
$$\sqrt[3]{3^5 + 3^5 + 3^5}$$
.
3.
2. The expression $(x+y)^3 - x(x+y)^2 - y(x+y)^2$ can be simplified so that it is written as just a single term. Do so.
The three terms share a common factor of $(x+y)^2$. Factoring,
 $(x+y)^3 - x(x+y)^2 - y(x+y)^2 = (x+y)^2[(x+y) - x-y] = (x+y)^2[0] = 0.$
3. The function f is defined by $f(n) = 3 \cdot f(n-1) - f(n-2)$, where n is any positive integer.
If $f(1) = 1$, and $f(2) = \frac{1}{3}$, evaluate $f(7)$.
f(7) = $\boxed{-7}$.
 $f(3) = 3 \cdot f(2) - f(1) = 3(\frac{1}{3}) - 1 = 0;$ $f(4) = 3 \cdot f(3) - f(2) = 3(0) - \frac{1}{3} = -\frac{1}{3};$
 $f(5) = 3(-\frac{1}{3}) - 0 = -1;$ $f(6) = 3(-1) - (-\frac{1}{3}) = -\frac{8}{3};$ $f(7) = 3(-\frac{8}{3}) - (-1) = -7.$
4. In the equation $\frac{1 - \sqrt{2} + \sqrt{3}}{1 + \sqrt{2} - \sqrt{3}} = \frac{\sqrt{x} + \sqrt{y}}{2}$, both x and y are nonnegative integers.

Compute the sum x + y.

The left side can be rationalized in a couple of ways. One possibility is: $\frac{1-\sqrt{2}+\sqrt{3}}{1+\sqrt{2}-\sqrt{3}} \cdot \left(\frac{1+\sqrt{2}+\sqrt{3}}{1+\sqrt{2}+\sqrt{3}}\right) = \frac{1-(\sqrt{2}-\sqrt{3})}{1+(\sqrt{2}-\sqrt{3})} \cdot \frac{1+(\sqrt{2}+\sqrt{3})}{1+(\sqrt{2}+\sqrt{3})}$ $= \frac{1+(\sqrt{2}+\sqrt{3})-(\sqrt{2}-\sqrt{3})-(2-3)}{1+(\sqrt{2}+\sqrt{3})+(\sqrt{2}-\sqrt{3})+(2-3)} = \frac{1+2\sqrt{3}-(-1)}{1+2\sqrt{2}+(-1)}$ $= \frac{2+2\sqrt{3}}{2\sqrt{2}} = \frac{1+\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{2}+\sqrt{6}}{2}.$ So x = 2 and y = 6 (or vice versa), and x + y = 8.

8.

(Problems for this event are variations of those presented at the 1984 Coaches' Institute.)

2009-10 Event 4B SOLUTIONS

Questions #1-3 all refer to a nine-sided regular polygon that is labeled A₁ A_{2...} A₉ and inscribed in a circle of radius 1.

 $m\widehat{A_1A_7} = \frac{3}{9}(360^\circ) = 120^\circ$, so we can create a 30-60-90 triangle as shown. Radius = 1 $\Rightarrow A_1P = \sqrt{3}$.

60

2. Secants containing $\overline{A_3}A_9$ and $\overline{A_4}A_5$ meet at point *Q*. What (*in degrees*) is the measure of $\angle A_5QA_9$?

 $m \angle A_5 Q A_9 = \left[\begin{array}{c} \angle A_5 Q A_9 \\ \hline 60^{\circ} \end{array} \right]$ which have measures of 160° and 40°, respectively. By theorem, $m \angle A_5 Q A_9 = \frac{1}{2} \left(m \widehat{A_5 A_9} - m \widehat{A_3 A_4} \right) = \frac{1}{2} (160^{\circ} - 40^{\circ}) = 60^{\circ}$.

3. The secant containing $\overline{A_2 A_9}$ meets the extension of the diameter containing A_8 at point *R*. What (*in degrees*) is the measure of $\angle A_9 R A_8$?

$$\mathbf{m} \angle \mathbf{A}_{5} \mathbf{R} \mathbf{A}_{8} = \left[\begin{array}{c} \angle A_{9} \mathbf{R} \mathbf{A}_{8} \text{ subtends the arc from } \mathbf{A}_{2} \text{ to halfway between } \mathbf{A}_{3} \text{ and } \mathbf{A}_{4} \text{ (60°), and} \\ \hline \mathbf{A}_{8} \mathbf{A}_{9} \text{ (40°). By theorem, } \mathbf{m} \angle \mathbf{A}_{9} \mathbf{R} \mathbf{A}_{8} = \frac{1}{2} (60^{\circ} - 40^{\circ}) = 10^{\circ}. \end{array} \right]$$

4. In Figure 4, $m \angle ABD = 120^{\circ}$ and BC = CD = 1. A circle is drawn through C and D, tangent to \overline{AB} at T. What will be the length of BT?

The 120° angle isn't actually needed. Using
$$\triangle TOB$$
,
 $OB = \sqrt{x^2 + r^2}$. Using $\triangle COM$ (with $CM = \frac{1}{2}$),
 $OM = \sqrt{r^2 - \frac{1}{4}}$. Using $\triangle BOM$ (with $BM = \frac{3}{2}$),
 $\left(\frac{3}{2}\right)^2 + \left(\sqrt{r^2 - \frac{1}{4}}\right)^2 = \left(\sqrt{x^2 + r^2}\right)^2 \implies x = \sqrt{2}$.

2009-10 Event 4C SOLUTIONS

1. What is the 2010th positive odd number?

4019

The nth positive odd number will always be 1 less than the nth positive even number (2n). So we calculate: 2n-1=2(2010)-1=4020-1=4019.

2. Find the sum of the infinite geometric series whose first two terms are 6! and 5! .

864

Since
$$(6!)(\frac{1}{6}) = 5!$$
, the common ratio must be $\frac{1}{6}$. Using the formula for the sum of an infinite converging geometric series, $\frac{a_1}{1-r} = \frac{6!}{1-(\frac{1}{6})} = \frac{6!}{(\frac{5}{6})} = (6!)(\frac{6}{5}) = 720(\frac{6}{5}) = 864$.

3. The sum of the first ten terms of an arithmetic sequence is four times the sum of the first five terms. If the first term of the sequence is a_1 and the common difference is d, *compute*

2009-10 Event 4D SOLUTIONS

1. Give the coordinates of the center of the circle described by $x^2 + y^2 - 12x + 10y - 38 = 0$.

(h, k) =
$$(6, -5)$$
.

It is sufficient to examine the x and y terms to see that in the process of completing the square, the terms $(x-6)^2$ and $(y+5)^2$ will be created.

2. Compute the area of the circle described by $x^2 + y^2 + 2x + 6y + 3 = 0$.

7
$$\pi$$
,
Completing the square, $(x^2 + 2x + 1) + (y^2 + 6y + 9) + 3 = 1 + 9$.
 $\Rightarrow (x+1)^2 + (y+3)^2 = 7$. Since the radius squared is 7, Area = $\pi r^2 = \pi (7)$.

3. The asymptotes of a hyperbola are the lines y = 2x and y = -2x. If the hyperbola passes through the point (9, 16), find *the x-coordinate of the hyperbola's positive x-intercept*.

$$\mathbf{x} = \sqrt{17} ,$$

or ≈ 4.123

The center of the hyperbola must be at the origin (where the asymptotes intersect), and since (9, 16) is located to the <u>right</u> of (8, 16), which lies on an asymptote, the hyperbola's branches open horizontally, with equation $\frac{x^2}{a^2} - \frac{y^2}{(2a)^2} = 1$. This rearranges to $x^2 - \frac{y^2}{4} = a^2$. Substituting (9, 16) yields $a^2 = 17$, so $x = +\sqrt{17}$.

A hyperbola has its foci on the *x*-axis and passes through the points (-1, 0), (2, 0), and (-2, 1). Compute *the x-coordinate of the <u>right-most</u> focus*.

Since
$$(-1, 0)$$
 and $(2, 0)$ are on the x-axis, they must be the vertices of the hyperbola. Furthermore, the center is located at $(\frac{1}{2}, 0)$ and the hyperbola opens horizontally. So far, this gives us $\frac{(x-\frac{1}{2})^2}{(\frac{3}{2})^2} - \frac{y^2}{b^2} = 1$. The only point we haven't used is $(-2, 1)$, so substitute these coordinates for x and y:
 $\frac{(-2-\frac{1}{2})^2}{(\frac{3}{2})^2} - \frac{1^2}{b^2} = 1 \implies \frac{(\frac{25}{4})}{(\frac{9}{4})} - \frac{1}{b^2} = 1 \implies \frac{25}{9} - 1 = \frac{1}{b^2} \implies b^2 = \frac{9}{16} \implies b = \frac{3}{4}$. Now use the hyperbola identity: $c^2 = a^2 + b^2 = \frac{9}{4} + (\frac{3}{4})^2 = \frac{45}{16} \implies c = \frac{3\sqrt{5}}{4}$. The right-most focus is located c units right of the center, at $x = \frac{1}{4} + \frac{3\sqrt{5}}{4}$.

Minnesota State High School Mathematics League _{Team Event}

2009-10 Meet 4 SOLUTIONS

1. A triangle inscribed in a circle has side lengths 12, $12\sqrt{2}$, and $6\sqrt{6} + 6\sqrt{2}$. Compute the length of the circle's diameter.

24

2. What is the least positive integer n > 1 for which the expression $\sqrt{1+2+3+...+n}$ simplifies to an integer? (*Mathematics Teacher, Oct. 2006*)

3. The expression $\frac{(\sqrt{3}+\sqrt{5})(\sqrt{5}+\sqrt{2})}{\sqrt{2}+\sqrt{3}+\sqrt{5}}$ can be rationalized into *a single fraction whose*

denominator is a positive integer. Do so.

$$\frac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{2}$$

4. Given $f(\theta) = (1 + \cos \theta) \sqrt{\frac{\sec \theta - 1}{\sec \theta + 1}}$, express $f(0) + f\left(\frac{\pi}{6}\right) + f\left(\frac{\pi}{4}\right) + f\left(\frac{\pi}{3}\right)$ accurate to three places

to the right of the decimal.

$$\frac{1+\sqrt{2}+\sqrt{3}}{2}$$
 , or 2.073.

5. When the radical equation $\sqrt{x+1-2\sqrt{x}} = 15$ is solved using the typical method of squaring both sides repeatedly, two solutions are discovered for *x*, but one of these solutions is extraneous. Find *the value of that <u>extraneous</u> solution*.

196

6. A parabola is defined as the curve containing all points equidistant from a focus *F* and a line called the directrix. Let us define a *quasi-parabola* to be the curve containing all points equidistant from *F* and a <u>line segment</u> called the directrix. *Find all x- and y-intercepts* of the quasi-parabola with F = (9, 9) and directrix with endpoints A = (3, 7) and B = (7, 5).

x - int = (22, 0); y - int = (0, 26).

+2 points for each correct intercept

1. Using the Law of Cosines,

$$12^{2} = (12\sqrt{2})^{2} + (6\sqrt{6} + 6\sqrt{2})^{2} - 2(12\sqrt{2})(6\sqrt{6} + 6\sqrt{2})\cos\alpha$$

$$144 = 288 + (216 + 72\sqrt{12} + 72) - (144\sqrt{12} + 288)\cos\alpha$$

$$144 = 576 + 144\sqrt{3} - (288\sqrt{3} + 288)\cos\alpha$$

$$144 = 576 + 144\sqrt{3} - (288\sqrt{3} + 288)\cos\alpha$$

$$144 = 576 + 144\sqrt{3} - (288\sqrt{3} + 288)\cos\alpha$$

$$144 = 576 + 144\sqrt{3} - (288\sqrt{3} + 288)\cos\alpha$$

$$144 = 576 + 144\sqrt{3} - (288\sqrt{3} + 288)\cos\alpha$$

$$\frac{-432 - 144\sqrt{3}}{-288 - 288\sqrt{3}} = \frac{3\sqrt{3}}{2 + 2\sqrt{3}} \left(\frac{2 - 2\sqrt{3}}{2 - 2\sqrt{3}}\right) = \frac{-4\sqrt{3}}{-8} = \frac{\sqrt{3}}{2} = \cos\alpha$$
So $\alpha = 30^{\circ}$, and since α is an exterior angle, there is an equilateral triangle of side length 12 at the circle's center. Radius = 12 \Rightarrow Diameter = $\boxed{24}$.
2. Using change of base, $\sqrt{1 + 2 + 3} + ... + n = \sqrt{\frac{M(n+1)}{2}}$. Suppose this simplifies to some integer k.
Then $\frac{M(n+1)}{2} = k^{2} \Rightarrow n(n+1) = 2k^{2}$. We are looking for two consecutive integers whose product is double a perfect square. (see table)
So the first n > 1 that works is n = $\boxed{6}$.
1. Let $x = \sqrt{2} + \sqrt{3} + \sqrt{5}$. Then the expression can be written:
 $\frac{(x-\sqrt{2})(x-\sqrt{3})}{x} = \frac{x^{2} - (\sqrt{2} + \sqrt{3})x + \sqrt{6}}{x} = x - (\sqrt{2} + \sqrt{3}) + \frac{\sqrt{6}}{x} = \sqrt{5} + \frac{\sqrt{10}}{\sqrt{2}} + \sqrt{10} + (\sqrt{6} + \sqrt{10} + (3 - 5))$
 $= \sqrt{5} + \frac{\sqrt{12} + \sqrt{18} - \sqrt{30}}{\sqrt{2} + (\sqrt{3} - \sqrt{5})} = \sqrt{5} + \frac{\sqrt{12} + \sqrt{3} - \sqrt{5}}{2} = \frac{\sqrt{2} + \sqrt{3} + \sqrt{5}}{2}$.
4. First note that $\sqrt{\frac{800}{800} + 1} = \sqrt{\frac{800}{800} + 1(\frac{800}{800} + 1)} = \sqrt{\frac{(8000 - 1)^{2}}{800}} = \frac{8000 - 1}{100} + \frac{1 - \cos^{2} \theta}{\sin \theta} = \sin \theta$, and $f(0) + f(\frac{\pi}{6}) + f(\frac{\pi}{4}) + f(\frac{\pi}{3}) = 0 + \frac{1}{2} + \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} = \frac{1 + \sqrt{2} + \sqrt{3}}{2}$.
5. Squaring both sides yields: $(\sqrt{x + 1 - 2\sqrt{x}})^{2} = (15)^{2} \Rightarrow x + 1 - 2\sqrt{x} = 225 \Rightarrow 2\sqrt{x} = x - 224$.
Squaring both sides a sectont time yields: $4x = x^{2} - 448x + 50176 \Rightarrow x^{2} - 452x + 50176$.
Solving this quadratic reveals roots of 196 and 256. 256 works in the original equation: [196] doesn't.
6. A quasi-parabola looks like a section of a parabola joined to two rays. In this case, the parabola section comes nowhere near the axes, so we need only co

where $x \le 6$. This has only a y-intercept, at (0, 26). The other ray emanates from (8, 7) with slope $-\frac{1}{2}$: $y-7 = -\frac{1}{2}(x-8)$, where $x \ge 8$. This has only an x-intercept, at (22, 0).