

Minnesota State High School Mathematics League

Individual Event

2009-10 Event 3A SOLUTIONS

1. As the value of k changes, the equation $(2 x-3 y+6)+k(2 x+y-10)=0$ describes a family of lines. What value of k identifies the vertical line in this family?

$$
\mathbf{k}=3 . \quad \text { Setting } \mathrm{k}=3 \text { causes the } \mathrm{y} \text {-terms to drop out, leaving an equation involving only } \mathrm{x} \text {. }
$$

2. Solve the system: $\left\{\begin{array}{l}2 x-3 y+6=0 \\ 2 x+y-10=0\end{array} \quad \Rightarrow\left\{\begin{array}{l}2 x=3 y-6 \\ 2 x=10-y\end{array} \quad\right.\right.$ Equating the right sides,
$(x, y)=(3,4)$.
$3 y-6=10-y \Rightarrow 4 y=16 \Rightarrow y=4$.
Substituting, $2 x=3(4)-6 \Rightarrow x=3$.
3. The system $\left\{\begin{array}{rr}p-q+2 r & =1 \\ 2 p-q & =3 \\ -p & +4 r\end{array} \quad 1 \quad\right.$ has a unique solution. Find it.

$$
\begin{aligned}
& (\mathbf{p}, \mathbf{q}, \mathbf{r})= \\
& \left(1,-1, \frac{1}{2}\right) .
\end{aligned} \begin{aligned}
& \text { Adding the first two equations and relating the result to the third equation: } \\
& \left\{\begin{array}{l}
3 p+2 r=4 \\
-p+4 r=1
\end{array} \quad \text { N ow triple the bottom equation and add: } 14 r=7 \Rightarrow r=\frac{1}{2} .\right. \\
& \text { Substituting, }-p+4\left(\frac{1}{2}\right)=1 \Rightarrow p=1 \text {, and again, } 2(1)-q=3 \Rightarrow q=-1 .
\end{aligned}
$$

4. Consider all possible ordered triples of integers (x, y, z) which solve the system
$\left\{\begin{array}{c}x+3 y-z=1 \\ 3 x-y-2 z=-1\end{array}\right.$. There aretwo specific singledigit positive integers, n and d, such that all of the x-values in those ordered triples can be written in the form $m n+d$, wherem is any integer. Compute the values of n and d.
$\mathbf{n}=7$, \quad M ultiply thetop equation by -2 and add: $x-7 y=-3 \Rightarrow y=\frac{x+3}{7}$.
$d=4$.
Then multiply the bottom equation by 3 and add: $10 x-7 z=-2 \Rightarrow z=\frac{10 x+2}{7}$.
We need $x+3$ and $10 x+2$ to both be multiples of 7 . This occurs when $x=4$, and every 7 units thereafter. So y and z will be integers when x is of the form $7 \mathrm{~m}+4$.

Minnesota State High School Mathematics League Individual Event

2009-10 Event 3B SOLUTIONS

1. Figure 1 shows square $A B C D$, of side length 2 , inscribed in parallelogram $A E C F$. If $m \angle F=60^{\circ}$, compute the length of $\overline{F C}$.
$F C=2+\frac{2}{\sqrt{3}}$,
or ≈ 3.155.

$$
\begin{aligned}
& D C=2 . \triangle A D F \text { is } 30-60-90, \text { so } \\
& F D=\frac{A D}{\sqrt{3}}=\frac{2}{\sqrt{3}} \cdot F C=F D+D C
\end{aligned}
$$

2. Figure 2 shows square $A B C D$, of side length 2 , inscribed in kite KITE so that $\triangle D C E$ is equilateral. If angles K and T are right angles, compute the length of $\overline{\mathrm{ET}}$.
$\mathbf{E T}=2+\sqrt{3}$,
Chase angles around point C to find that $\mathrm{m} \angle \mathrm{BCT}=30^{\circ}$. So $\triangle \mathrm{BTC}$ is $30-60-90, \mathrm{BT}=1$, and
or ≈ 3.732.
$C T=\sqrt{3} . E T=E C+C T=2+\sqrt{3}$.
3. Figure 3 shows square $A B C D$, of side length 2, inscribed in trapezoid KLM N so that $\triangle A N D$ is equilateral. Compute the length of $\overline{N K}$.

$$
N K=2+\frac{2}{\sqrt{3}} \text {, or } \approx 3.155 .
$$

4. A square of side length 2 is inscribed in a regular hexagon so that Fig. 3

Figure 2 two sides of the square are parallel to two sides of the hexagon. Find the shortest distance between two of the parallel sides.
$\frac{\sqrt{3}-1}{2}$,
or ≈ 0.366.

Drop altitudes from X and G to create similar 30-60-90 triangles, with heights x and 1 . U sing side ratios, $A X=\frac{2}{\sqrt{3}}$. U sing similar triangles, $\frac{x}{1}=\frac{A G}{A X} \Rightarrow A G=\frac{2}{\sqrt{3}} X$. But $X G$ has the same length as the hexagon's radius $\left(1+\frac{1}{\sqrt{3}}\right)$.
Solving $\frac{2}{\sqrt{3}}+\frac{2}{\sqrt{3}} X=1+\frac{1}{\sqrt{3}}, X=\frac{\sqrt{3}-1}{2}$.

Minnesota State High School Mathematics League Individual Event

2009-10 Event 3C SOLUTIONS

1. Compute the value of $\operatorname{Sin}^{-1}\left(\frac{1}{2}\right)+\operatorname{Cos}^{-1}\left(\frac{-1}{2}\right)$.
$\frac{5 \pi}{6}$, or 150°.

$$
\sin ^{-1}\left(\frac{1}{2}\right)+\cos ^{-1}\left(\frac{-1}{2}\right)=\frac{\pi}{6}+\frac{2 \pi}{3}=\frac{5 \pi}{6} .
$$

2. Express the range of the function $\mathrm{f}(\mathrm{x})=\cos \left(\operatorname{Tan}^{-1} \mathrm{x}\right)$. Do this by placing inequal ity symbols in the boxes, and real numbers, $-\infty$, or $+\infty$ in the blanks.
$0<f(x) \leq 1$.
The definition of the inversetangent function is $-\frac{\pi}{2}<\operatorname{Tan}^{-1} x<\frac{\pi}{2}$, so we are looking for the values cosine can assume in quadrants I and IV and along the positive x-axis. These values are found on the interval (0,1].
3. Right triangle $A B C$ (shown in Figure 3) has legs of lengths $A B=4$ and $A C=6$, and point D is the midpoint of side $\overline{A C}$. Compute $\sin \angle C B D$.

$\frac{6 \sqrt{13}}{65}$,
$\triangle A B D$ is 3-4-5, and by Pythagoras, $B C=2 \sqrt{13}$. Using $\triangle A B C, \sin \angle C=\frac{2}{\sqrt{13}}$. By the Law of Sines,
or ≈ 0.333.

$$
\frac{\sin C}{5}=\frac{\sin \angle C B D}{3} \Rightarrow \sin \angle C B D=\frac{6}{5 \sqrt{13}} .
$$

Figure3
4. The side lengths of a certain triangle are three consecutive integers, and the smal lest angle in the triangle has a tangent of $\frac{2 \sqrt{6}}{5}$. Find the exact value of the triangle's perimeter.
18.

Label the three side lengths as $a-1, a$, and $a+1$. The shortest side, $a-1$, must be opposite the smallest angle, so by the Law of Cosines:
$(a-1)^{2}=a^{2}+(a+1)^{2}-2 a(a+1) \cos \left(\arctan \frac{2 \sqrt{6}}{5}\right) \Rightarrow \frac{5}{7}=\frac{a^{2}-2 a+1-\left(a^{2}+a^{2}+2 a+1\right)}{-2 a(a+1)}$
$\Rightarrow \frac{5}{7}=\frac{-a^{2}-4 a}{-2 a(a+1)}=\frac{a+4}{2(a+1)} \Rightarrow 7 a+28=10 a+10 \Rightarrow a=6$, and $P=3 a=18$.

Minnesota State High School Mathematics League

Individual Event

2009-10 Event 3D SOLUTIONS

1. If $\log _{4} M=\frac{5}{2}$, then M can be written in the form 2^{n}. Computen.
$n=5$.

$$
\log _{4} M=\frac{5}{2} \Rightarrow M=4^{5 / 2}=(\sqrt{4})^{5}=2^{5}
$$

2. Compute the value of the sum: $\log \frac{1}{2}+\log \frac{2}{3}+\log \frac{3}{4}+\ldots+\log \frac{n}{n+1}+\ldots+\log \frac{99}{100}$.
-2.
(NYC Contest Problem Book, © 1986)

$$
\begin{aligned}
& \log \frac{1}{2}+\log \frac{2}{3}+\log \frac{3}{4}+\ldots+\log \frac{n}{n+1}+\ldots+\log \frac{99}{100} \\
= & (\log 1-\log 2)+(\log 2-\log 3)+(\log 3-\log 4)+\ldots+(\log 99-\log 100) \\
= & \log 1-\log 100=0-2=-2 .
\end{aligned}
$$

(1st HS M ath League
3. If $b=\log _{3} x$, find all real values of x which satisfy $\log _{b}\left(\log _{3} x^{2}\right)=2$. Problem Book, © 1989)
$x=9$. 1 point for incorrectly listing $\pm 9 ;-9$ is extraneous because of the definition of b.
$\log _{b}\left(\log _{3} x^{2}\right)=2 \Rightarrow \log _{b}\left(2 \cdot \log _{3} x\right)=2 \Rightarrow \log _{b}(2 b)=2$ $\Rightarrow \log _{\mathrm{b}} 2+\log _{\mathrm{b}} \mathrm{b}=\log _{\mathrm{b}} 2+1=2 \Rightarrow \log _{\mathrm{b}} 2=1$, so $b=2$. Since $b=\log _{3} x, x$ must equal 9 .
4. If $\log 80=a$ and $\log 45=b$, write $\log 6$ as a simplified expression involving a and b.
$\log 6=\frac{a+b}{2}-1$.
(This hints that $\log 60$ is exactly the average of a and b. H ow does 60 relate, numerically, to

$$
\begin{aligned}
a+b & =\log 80+\log 45 \\
& =\log (80 \cdot 45) \\
& =\log 3600=\log (36 \cdot 100)=\log 36+\log 100 \\
& =\log 36+2
\end{aligned}
$$

So $\log 36=\log 6^{2}=2 \log 6=a+b-2$, and $\log 6=\frac{a+b-2}{2}$.

Minnesota State High School Mathematics League Team Event

2009-10 M eet 3

SOLUTIONS

1. Find the value of n such that $\frac{1}{1+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\ldots+\frac{1}{\sqrt{2 n-1}+\sqrt{2 n+1}}=100$.
$\mathbf{n}=20200$. (M athematics Teacher, A ugust 2006)
2. The sides of a triangle have lengths $\log _{8} a, \log _{16} a$, and $\log _{64} a$ for some value of a. Compute the sine of the smallest angle in this triangle.
$\frac{\sqrt{15}}{8}$, or ≈ 0.484.
3. Figure 3 shows square $A B C D$, of side length 2 , inscribed in trapezoid $K L M N$ so that $\triangle A N D$ is equilateral. If $m \angle M=\alpha$, express the length of $\overline{\mathrm{LM}}$ in terms of $\sin \alpha$.

$$
\mathbf{L M}=\frac{1+\sqrt{3}}{\sin \alpha} .
$$

Figure 3
4. Two people, both starting at sunrise, walk toward each other from opposite ends of a hiking trail. They meet at noon. Both continue hiking, the faster one finishing the trail at $5: 20 \mathrm{pm}$, the slower one finishing at 8:20 pm. What time was sunrise?
5:20 am
5. Figure 5 shows square $A B C D$, of side length 2 , inscribed in cyclic quadrilateral CRLE so that $\triangle A L D$ is equilateral. Compute the length of diagonal $\overline{\mathrm{LC}}$.
$L C=\sqrt{2}+\sqrt{6}$, or ≈ 3.864.

6. Alice, Beth, and Cindy, starting together, walk in the same direction around a circular track. It takes the girls $5 / 36,2 / 9$, and $35 / 99$ of an hour, respectively, to walk once around the track. How many laps will Alice have walked by the next time all three girls are together again at the starting point?

1. M ultiply the top and bottom of each fractional term by the conjugate of its denominator:

$$
\begin{gathered}
\frac{1}{1+\sqrt{3}} \cdot \frac{1-\sqrt{3}}{1-\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}} \cdot \frac{\sqrt{3}-\sqrt{5}}{\sqrt{3}-\sqrt{5}}+\ldots+\frac{1}{\sqrt{2 n-1}+\sqrt{2 n+1}} \cdot \frac{\sqrt{2 n-1}-\sqrt{2 n+1}}{\sqrt{2 n-1}-\sqrt{2 n+1}}=100 \\
\frac{1-\sqrt{3}}{1-3}+\frac{\sqrt{3}-\sqrt{5}}{3-5}+\frac{\sqrt{5-\sqrt{7}}}{5-7} \ldots+\frac{\sqrt{2 n-1}-\sqrt{2 n+1}}{(2 n-1)-(2 n+1)}=\frac{1-\sqrt{2 n+1}}{-2}=100
\end{gathered}
$$

So $\sqrt{2 n+1}=201 \Rightarrow 2 n+1=201^{2} \Rightarrow 2 n=(201-1)(201+1) \Rightarrow n=(200)(101)=20200$.
2. U sing change of base, $\log _{8} a=\frac{\log _{2} a}{\log _{2} 8}=\frac{1}{3} \log _{2} a$. Similarly, $\log _{16} a=\frac{1}{4} \log _{2} a$, and $\log _{64} a=\frac{1}{6} \log _{2} a$. So this triangle is similar to one with side lengths $\frac{1}{3}, \frac{1}{4}$, and $\frac{1}{6}$. M ultiplying by a scale factor of the LCD (12) produces a triangle with integer side lengths: 4, 3, 2. Call the smallest angle $\angle \mathrm{S}$. By the Law of Cosines, $2^{2}=3^{2}+4^{2}-2(3)(4) \cos S \Rightarrow \cos S=\frac{4-9-16}{-24}=\frac{7}{8}$, and $\sin S=\sqrt{1-\cos ^{2} S}=\frac{\sqrt{15}}{8}$.
3. Chasing angles, $m \angle C D M=30^{\circ}$ and $m \angle C B L=60^{\circ}$. Label $C M=x$ and $C L=y$. By the Law of Sines,

$$
\begin{gathered}
\frac{\sin 30^{\circ}}{x}=\frac{\sin \alpha}{2} \Rightarrow x \sin \alpha=1 \Rightarrow x=\frac{1}{\sin \alpha} \text {, and } \frac{\sin 60^{\circ}}{y}=\frac{\sin \left(180^{\circ}-\alpha\right)}{2} \Rightarrow y \sin \alpha=\sqrt{3} \\
\Rightarrow y=\frac{\sqrt{3}}{\sin \alpha} . \text { So } L M=C M+C L=x+y=\frac{1+\sqrt{3}}{\sin \alpha} .
\end{gathered}
$$

4. Let s be the speed of the slow walker, f the speed of the fast walker, and t the number of hours between sunrise and noon. The distance that the fast walker travels before noon is the same distance that the slow walker travels after noon, so $\mathrm{ft}=\frac{25}{3} \mathrm{~s}$. Also, the distance that the slow walker travels before noon is the same distance that the fast walker travels after noon, so st $=\frac{16}{3} f . M$ ultiplying these two equations yields fst $^{2}=\frac{25}{3} \cdot \frac{16}{3} \mathrm{fs} \Rightarrow \mathrm{t}^{2}=\frac{25 \cdot 16}{9} \Rightarrow \mathrm{t}=\frac{5 \cdot 4}{3}=6 \frac{2}{3}$ hours. Sunrise occurred at $5: 20 \mathrm{am}$.
5. Chasing angles, $m \angle E A B=30^{\circ}$ and $m \angle C D R=30^{\circ}$. Various 30-60-90 relationships allow us to label the perimeter of $C R L E$ as shown. N ote that $\triangle L E R \cong \triangle E L C$, so diagonals $\overline{C L}$ and $\overline{E R}$ are congruent! Because CRLE is cyclic, we apply Ptolemy's Theorem: EL $\cdot C R+L R \cdot E C=L C \cdot E R$
$\Rightarrow\left(2+\frac{4}{\sqrt{3}}\right)\left(\frac{2}{\sqrt{3}}\right)+\left(2+\frac{2}{\sqrt{3}}\right)^{2}=\frac{4}{\sqrt{3}}+\frac{8}{3}+\left(4+\frac{8}{\sqrt{3}}+\frac{4}{3}\right)=\frac{12}{\sqrt{3}}+8=4 \sqrt{3}+8=L^{2}$. H oping $4 \sqrt{3}+8$ is a perfect square, set $C L=a+b \sqrt{3}$ and solve the resulting system: $a=\sqrt{2}, b=\sqrt{2} \Rightarrow C L=\sqrt{2}+\sqrt{6}$.
6. First find the LCD of the three rates: $36=2^{2} \cdot 3^{2}, 9=3^{2}, 99=3^{2} \cdot 11 \Rightarrow L C D=2^{2} \cdot 3^{2} \cdot 11=396$. $r_{A}=\frac{55}{396}, r_{B}=\frac{88}{396}, r_{C}=\frac{140}{396}$. N ow examine the numerators: $55=5 \cdot 11, \quad 88=2^{3} \cdot 11$, $140=2^{2} \cdot 5 \cdot 7$. What factors is Alice's numerator missing? $2^{3} \cdot 7=56$ laps. (Why does this w ork?)
