

Minnesota State High School Mathematics League

Individual Event

2009-10 Event 1A SOLUTIONS

1. Express $\frac{\frac{2}{3}+\frac{1}{2}}{2}+\frac{1}{\frac{2}{3}+\frac{1}{2}}$ as the quotient of two relatively prime integers.

$$
\frac{6}{6}\left(\frac{\frac{2}{3}+\frac{1}{2}}{2}+\frac{1}{\frac{2}{3}+\frac{1}{2}}\right)=\frac{4+3}{12}+\frac{6}{4+3}=\frac{7}{12}+\frac{6}{7}=\frac{7 \cdot 7+12 \cdot 6}{12 \cdot 7}=\frac{121}{84} .
$$

Graders' note: No alternate forms accepted here!
2. Alec is hosting a large party and needs to buy 100 bottles of Sierra Dew. Luckily, CostCorp sells them in bulk! He can buy 36 bottles for $\$ 9.00$, 15 bottles for $\$ 4.50$, or 4 bottles for $\$ 1.60$. What's the smallest amount Alec could pay, if he were to buy exactly 100 bottles?
$\$ 28.60$
36 bottles cost $\$ 0.25$ each, 15 bottles cost $\$ 0.30$ each, and 4 bottles cost $\$ 0.40$ each. W orking based on the number of 36 -bottle packs:
Two 36 's can only reach 100 with seven 4's: $2(\$ 9)+7(\$ 1.60)=\$ 29.20$; O ne 36 reaches 100 with four 15 's and one $4: 1(\$ 9)+4(\$ 4.50)+1(\$ 1.60)$ $=\$ 28.60 ;$ With no 36 's, we maximize 15 's: $4(\$ 4.50)+10(\$ 1.60)=\$ 34$.
3. Find integers m and n, with $m<n$, for which the least common multiple of m and n is 105 and $50<m+n<70$.

$$
m=21, n=35 .
$$

$105=3 \cdot 5 \cdot 7$. The divisors of 105 are: $1,3,5,7,15,21,35,105$. Of these, 21 and 35 are the only pair whose sum is between 50 and 70 .
4. In order to cope with the recession in auto sales, A cana Mist keeps adjusting the price for which she is selling her used car, which is worth $\$ 10,000$. Starting at this price prior to day 1 , each day A cana either raises or lowers the price by 20% (but never asks less than the car is worth). Eventually, after d days of adjusting the price, she finds a buyer and makes a small profit - less than 5% of the car's worth. What is the smallest possible value for d ?

The price after \mathbf{a} increases and \mathbf{b} decreases is $(1.2)^{a}(0.8)^{b}$ times $\$ 10,000$. We want to find values for \mathbf{a} and \mathbf{b} such that $1<(1.2)^{\mathbf{a}}(0.8)^{\mathbf{b}}<1.05$, and $\mathbf{a}+\mathbf{b}$ is a minimum.
$\mathrm{d}=9$.
Since $(1.2)(0.8)=0.96$, we know that there must be more price increases than decreases. U se a calculator: $a=2, b=1 \Rightarrow(1.2)^{a}(0.8)^{b}=1.152$,

$$
\begin{aligned}
& a=3, b=2 \Rightarrow(1.2)^{a}(0.8)^{b} \approx 1.106, a=4, b=3 \Rightarrow(1.2)^{a}(0.8)^{b} \approx 1.062, \\
& a=5, b=4 \Rightarrow(1.2)^{a}(0.8)^{b} \approx 1.019 . \text { So } a+b=9 .
\end{aligned}
$$

Minnesota State High School Mathematics League

Individual Event

2009-10 Event 1B SOLUTIONS

1. In Figure 1, $\triangle A B C$ is an isosceles triangle with $A B=A C$. Find $m \angle D A C+m \angle B C F+m \angle C B E$.

These are the exterior angles of the triangle! By the Exterior A ngle Theorem, their sum is 360…
2. On hypotenuse $\overline{P R}$ of right triangle $P Q R$ (Figure 2), X is the point for which $P X=P Q$. If $m \angle P=40^{\circ}$, find $m \angle R Q X$.
20°
O bserve the labeling in Figure 2. $40^{\circ}+\mathrm{n}^{\circ}+\mathrm{n}^{\circ}=180^{\circ}$, so $n=70^{\circ}$. Then $m \angle R Q X=90^{\circ}-n^{\circ}=20^{\circ}$.
3. In the regular 9-sided polygon shown in Figure 3, find the measure of the acute angle formed by the extensions of the two darkened sides.
60°
The concave quadrilateral created by the extended sides is shaded. Label the nonagon's exterior angles \mathbf{x}, and its interior angles $n . x=\frac{360^{\circ}}{9}=40^{\circ}$, and $n=180^{\circ}-x=140^{\circ}$.
The desired angle is $360^{\circ}-2 x-\left(360^{\circ}-n\right)=n-2 x=60^{\circ}$.
4. In Figure $4, A B=B C=C D=D E=E F=F G=G A$. Find $m \angle A$.

Figure 1
$\frac{180^{\circ}}{7}$, or
$\approx 25.714^{\circ}$.
Label Figure 4 as shown, using
isosceles triangles and exterior
angles. Then, $\mathrm{m} \angle \mathrm{BCD}=$
$(180-4 \mathrm{a})^{\circ}$, forcing $\angle \mathrm{DCE}$,
$\angle C E D, \angle \mathrm{EFD}$, and $\angle \mathrm{EDF}$
to measure 3a each. So
$\mathrm{m} \angle \mathrm{FED}=\mathrm{a}^{\circ}$, and in $\triangle \mathrm{FED}:$
$\mathrm{a}+3 \mathrm{a}+3 \mathrm{a}=180^{\circ}$
$7 \mathrm{a}=180^{\circ} \Rightarrow \mathrm{a}=(180 / 7)^{\circ}$

Figure 4

Minnesota State High School M athematics League

Individual Event

2009-10 Event 1C SOLUTIONS

1. In Figure $1, A B=4, B C=3$, and $A C=5$. Find $\cot A$.
$\frac{4}{3}$, or ≈ 1.333.

$$
\cot \mathrm{A}=\frac{\text { adjacent leg }}{\text { opposite leg }}=\frac{4}{3}
$$

Figure 1

2. Again use Figure 1, but this time ignore the values from problem \#1.

Now, $\sin A=\frac{3}{5}$ and $A C=7$. Find the length of $\overline{B C}$.
$\frac{21}{5}$, or $4.2 . \quad \sin A=\frac{o p p}{h y p}=\frac{B C}{7}=\frac{3}{5} \Rightarrow 5 \cdot B C=21 \Rightarrow B C=\frac{21}{5}$.
3. In Figure 3, $\sin \angle E D F=\frac{3}{5}$ and $\sin \angle D E F=\frac{4}{5}$.

If $D F=7$, find the length of $\overline{E F}$.
Figure 3

$\frac{21}{4}$, or 5.25 .
Notice that $\triangle D F T$ is identical to $\triangle A B C$ from problem \#2! So the altitude $\overline{\mathrm{FT}}$ has length $\frac{21}{5}$, and: $\sin \angle \mathrm{DEF}=\frac{4}{5}=\frac{21 / 5}{\mathrm{EF}} \Rightarrow 4 \cdot E F=21 \Rightarrow E F=\frac{21}{4}$.
4. Again in Figure $3, \sin \angle E D F=\frac{3}{5}$ and $\sin \angle D E F=\frac{4}{5}$, but $D F$ does not necessarily equal 7 . If $D E=10$, find the length of the altitude dropped from F.

Let $F T=3 x$, and $D F=5 x$. Then $\sin \angle D E F=\frac{4}{5}=\frac{3 x}{E F} \Rightarrow E F=\frac{15}{4} x$.
N ote that $F T=3 x=\frac{12}{4} x$. This means that $\triangle F E T$ has sides in a 3:4:5 ratio, and so $T E=\frac{9}{4} x$. Similar reasoning indicates that $D T=4 x$. Since $D T+T E=D E$,

$$
4 x+\frac{9}{4} x=10 \Rightarrow \frac{25}{4} x=10 \Rightarrow x=\frac{40}{25}=\frac{8}{5}, \text { so FT }=3 x=3\left(\frac{8}{5}\right)=\frac{24}{5} .
$$

Minnesota State High School M athematics League

 Individual Event
2009-10 Event 1D SOLUTIONS

1. In the following synthetic division, what number belongs in the empty box?

4

Concentrate on the circled values. They lead us to the equation: $(-2)(5)+x=-6$. Solving, $x=4$.
2. Find the remainder when $2 x^{3}-x+6$ is divided by $x-5$.
251. U sing the Remainder Theorem, we can substitute 5 for $x: 2(5)^{3}-(5)+6=250+1=251$.
3. If $f(x)=x+1, g(x)=x^{2}+2$, and $h(x)=x^{3}+3$, write an expression for $f(g(h(x)))$ as a standard-form polynomial in x .
$x^{6}+6 x^{3}+12$.
W ork from the inside out: $g[h(x)]=g\left[x^{3}+3\right]=\left[x^{3}+3\right]^{2}+2=x^{6}+6 x^{3}+11$, So $f(g(h(x)))=f\left(x^{6}+6 x^{3}+11\right)=\left(x^{6}+6 x^{3}+11\right)+1=x^{6}+6 x^{3}+12$.
4. For how many integers $c \leq 2009$ will the solutions of the equation $x^{2}-38 x+c=0$ be complex conjugates of the form $a \pm b i$, where a and b are positive integers?

The sum of the roots $=(a+b i)+(a-b i)=2 a=38 \Rightarrow a=19$.
The product of the roots $=(a+b i)(a-b i)=a^{2}+b^{2}=19^{2}+b^{2}=c \leq 2009$.
40.

So $361+b^{2} \leq 2009$, and $b^{2} \leq 1648$. Since b is a positive integer, we are essentially being asked for the number of perfect squares less than or equal to 1648.
$\sqrt{1648} \approx 40.6$, so the number of integral values of c is 40 .

Minnesota State High School Mathematics League Team Event

2009-10 M eet 1 SOLUTIONS
1.

$f(x)=\frac{a}{x-c}+d$

$$
g(x)=\frac{p}{(x-q)(x-r)}
$$

The graphs of $f(x)$ and $g(x)$, two rational functions, are shown. Thefunction $(f+g)(x)$ has exactly one rational root. Find it.

$\frac{1}{2}$, or 0.5 .

2. The greatest common divisor of a, b, and c is 6 . The greatest common divisor of ab, ac, and bc is 360 . What is the smallest possible value for $a b c$?

21600

3. For a circle of radius r, the ratio of the side length of a regular circumscribed polygon of n sides to the side length of a regular inscribed polygon of n sides may be written in the form $T(f(n))$, where T is one of the six standard trigonometric functions and f is a function involving π and n . Do so.

区영

4. If $f(x)=x+1, g(x)=x^{2}+2, h(x)=x^{3}+3$, and $k(x)=x-c$, find the smallest value of c that causes $k(f(g(h(x))))$ to have a real root.
5.
6. In parallelogram $P Q R S$, angle $P S R$ is acute, and point X is located on side $\overline{R S}$ so that $X R=R Q, X Q=Q P$, and $X P=P S$. Find $m \angle P S X$.

72°.

6. Express $\frac{5}{0 . \overline{2}+0 . \overline{4}+0 . \overline{7}}$ as the quotient of two relatively prime integers.

45 Graders' note:
 13 . No alternate forms accepted here!

1. U sing the asymptotes, $f(x)=\frac{a}{x-4}+2$ and $g(x)=\frac{p}{(x-1)(x--3)}$.

U sing the y-intercepts, $\frac{7}{4}=\frac{a}{-4}+2 \Rightarrow a=1 \quad$ and $\quad-1=\frac{p}{(-1)(3)} \Rightarrow p=3$.

$$
(f+g)(x)=\frac{1}{x-4}+2+\frac{3}{(x-1)(x+3)} . \text { Simplifying the right side yields } \frac{2 x^{3}-3 x^{2}-17 x+9}{(x-4)(x-1)(x+3)}
$$

The numerator controls the roots, so we consider the equation $2 x^{3}-3 x^{2}-17 x+9=0$.
The possible rational roots are $\pm 1,3,9, \frac{1}{2}, \frac{3}{2}, \frac{9}{2}$. Graphing $y=2 x^{3}-3 x^{2}-17 x+9$, there are real roots between 3 and 4,0 and 1 , and -3 and -2 . O nly one of these intervals contains a rational root possibility; the interval 0 to 1 contains $\frac{1}{2}$. Test:

$$
\text { rational root }=\frac{1}{2}
$$

2. a, b, and c must all be multiples of both 2 and 3 , so each of $\{a b, a c, b c\}$ is a multiple of $2^{2} \cdot 3^{2}$. Since $360=2^{3} \cdot 3^{2} \cdot 5$, we need to figure out where the 5 and the extra power of 2 come from. We can deduce that exactly two of $\{a, b, c\}$ are multiples of 5 . (If all thre were, then the GCD would contain a factor of 5 ; if only one was a factor of 5 , then the product of the other two could not be a multiple of 360 .) U sing similar reasoning, exactly two of $\{a, b, c\}$ are multiples of 4 .
Therefore, without loss of generality, we know the following:
a and b both contain factors of 3,4 , and 5 ; $\quad c$ contains factors of 2 and 3 .
So the smallest possible valuefor $a b c$ is $(3 \cdot 4 \cdot 5) \cdot(3 \cdot 4 \cdot 5) \cdot(2 \cdot 3)=21600 .(a=b=60 ; c=6)$
3. Consider the figure shown at right, which displays one of the congruent triangle "sections" from the inscribed polygon, adjacent to a similar section from the circumscribed polygon. In each case, the central angle enclosed by each section is $\frac{2 \pi}{n}$, so $\theta=\frac{\pi}{n}$.
In the inscribed section, $\sin \theta=\frac{s / 2}{r}=\frac{s}{2 r} \Rightarrow s=2 r \sin \theta$.
In the circumscribed section, $\tan \theta=\frac{\mathrm{S} / 2}{\mathrm{r}}=\frac{\mathrm{S}}{2 \mathrm{r}} \Rightarrow \mathrm{S}=2 \mathrm{r} \tan \theta$.

$\frac{\mathrm{S}}{\mathrm{s}}=\frac{2 \Varangle \tan \theta}{2 \Varangle \sin \theta}=\frac{1}{\cos \theta}=\sec \theta=\sec \left(\frac{\pi}{\mathrm{n}}\right)$.
4. From the solution to problem 3 of Event D, $f(g(h(x)))=x^{6}+6 x^{3}+12$.

So $k(f(g(h(x))))=x^{6}+6 x^{3}+(12-c)$. Letting $y=x^{3}$, this converts to $y^{2}+6 y+(12-c)$.
A pplying the Q uadratic Formula, $y=\frac{-6 \pm \sqrt{36-4(12-c)}}{2}$. To have a real root, the discriminant must be non-negative: $36-4(12-c)=4 c-12 \geq 0 \Rightarrow c \geq 3$.
5. Label the desired angle as α. Then label the other angles of $\triangle P S X$ as shown. Since $\angle P S X$ is supplementary with both $\angle \mathrm{XRQ}$ and $\angle \mathrm{SPQ}$, $\mathrm{m} \angle \mathrm{XRQ}=\mathrm{m} \angle \mathrm{SPQ}=180^{\circ}-\alpha$. This means $\mathrm{m} \angle \mathrm{XPQ}$ also equals $\alpha!(\triangle \mathrm{SPX} \sim \triangle \mathrm{PQX})$ Now, $m \angle P Q R=m \angle P Q X+m \angle X Q R$

$$
\begin{aligned}
& \alpha=\left(180^{\circ}-2 \alpha\right)+\frac{\alpha}{2} \\
& \frac{5 \alpha}{2}=180^{\circ} \Rightarrow \alpha=72^{\circ} .
\end{aligned}
$$

6. $\frac{5}{0 . \overline{2}+0 . \overline{4}+0 . \overline{7}}=\frac{5}{\left(\frac{2}{9}+\frac{4}{9}+\frac{7}{9}\right)}=\frac{5}{\left(\frac{13}{9}\right)}=5 \cdot \frac{9}{13}=\frac{45}{13}$.
