

Minnesota State High School Mathematics League Individual Event

2008-09 Event 2A SOLUTIONS

1. Given that $(y+7)+\left(2 y+x^{2}\right)=\left(3+x^{2}\right)+3$, find the value of y.
$y=\frac{-1}{3}$ or $-0.333 . \quad 3 y+7+x^{2}=6+x^{2} \Rightarrow 3 y=-1$, etc.
2. The Sir Charge car rental company charges $\$ 45$ per day to rent a car, plus $\$ 6.00$ per gallon of gas used. The car can drive 26 miles per gallon. If Teddy rents this car from Sir Charge for 5 days and drives it a total of m miles, write a linear expression in terms of m which describes Teddy's total cost.

$$
225+\frac{3}{13} m \text {. }
$$

$$
\frac{\$ 45}{\text { daty }} \cdot 5 \text { darts }=\$ 225 ; \quad m \text { mites } \cdot \frac{1 \text { gathon }}{26 \text { mites }} \cdot \frac{\$ 6}{\text { gathon }}=\frac{3}{13} m .
$$

3. Don's calculator has some warped circuits and does not input integers correctly. When Don enters an odd integer n, the calculator interprets it as $n+3$. When Don enters an even integer m, the calculator interprets it as $m / 2$. If Don entered the numbers $15,24,33$, and x, and the calculator claimed the sum of those numbers was 101 , find x.
$x=70$.
If x is odd, then the sum is $(15+3)+(24 / 2)+(33+3)+(x+3)=101$.
Solving, $x=32$, which contradicts the fact that x is odd.
If x is even, then the sum is $(15+3)+(24 / 2)+(33+3)+(x / 2)=101$.
Solving here yields $x=70$.
4. Ole, who occasionally lies, wrote down an integer N, and then gave his friend Lena the following inequalities:
A. $N-13<50-N$
B. $N+8<100-2 N$
C. $3 N+60<5 N+3$
D. $5 N-20<N+99$

As it turned out, exactly two of those statements were lies. Find the value of N.
$N=31$.
Solving, A. $N<31.5$,
B. $N<302 / 3$,
C. $N>28.5$,
D. $N<29.75$.
\boldsymbol{A} is true, since otherwise it would make both \boldsymbol{B} and \boldsymbol{D} false.
C is true, since no other statements can be false with it. So $302 / 3<N<31.5$.

Minnesota State High School Mathematics League

Individual Event

2008-09 Event 2B

SOLUTIONS

1. The lengths of the sides of a scalene triangle, listed in size order, are $5, x$, and 15 . How many possible values for x are there, given that x is an integer?

There are 4 possible values.
By the Triangle Inequality, $5+x>15 \Rightarrow x>10$.
Since the sides are in size order, $x=11,12,13$, or 14 .
2. Point P is chosen along leg $\overline{B C}$ of right triangle $A B C$ so that $B P=P A$ (Figure 2). If $B C=10$ and $A C=4$, find $B P$.

$$
B P=\frac{29}{5} \text { or } 5 \frac{4}{5} \text { or } 5.8 \text {. }
$$

Labeling as shown in the diagram,

$$
4^{2}+(10-x)^{2}=x^{2}
$$

$$
16+\left(100-20 x+x^{2}\right)=x^{2}
$$

$$
116=20 x
$$

3. In an isosceles triangle with a 30° vertex angle, the perpendicular bisector of one leg divides the other leg into the ratio $k: 2$. If $k \geq 2$, find k.

$$
k=\frac{2}{\sqrt{3}-1} \text { or } \sqrt{3}+1 \text { or } 2.732 .
$$

$$
\begin{aligned}
k+2 & =\frac{k \sqrt{3}}{2}+\frac{k \sqrt{3}}{2} \\
k+2 & =k \sqrt{3} \\
2 & =k(\sqrt{3}-1)
\end{aligned}
$$

$\frac{k \sqrt{3}}{2}$	$\frac{k \sqrt{3}}{2}$

4. In triangle $A B C, m \angle A B C=m \angle A C B=72^{\circ}$. Find the ratio $A B: B C$, and express it as a decimal accurate to three decimal places.
$\mathbf{A B}: \mathbf{B C}=1.618$ or $(1+\sqrt{5}): 2$ or $2:(\sqrt{5}-1)$
Labeling angles, $\alpha=36^{\circ}, 2 \alpha=72^{\circ}$, etc.
Also, let $B F=F C=B D=x$, and $D F=y$. Set $\frac{A B}{B C}=r$.
$\triangle C D B \sim \triangle A B C \Rightarrow \frac{C D}{D B}=\frac{x+y}{x}=1+\frac{1}{r}=\frac{A B}{B C}=r$.

Use a calculator's equation solver on $1+\frac{1}{r}=r$.

Minnesota State High School Mathematics League

Individual Event

2008-09 Event 2C SOLUTIONS

Questions 1 and 2 refer to Figure 1 in which $\tan \alpha=\frac{5}{12}, \tan \beta=4 \sqrt{5}$.

1. Find $\sin 2 \alpha$.

$$
\begin{aligned}
\sin 2 \alpha & =2 \sin \alpha \cos \alpha \\
& =2\left(\frac{5}{13}\right)\left(\frac{12}{13}\right)
\end{aligned}
$$

2. Find $\cos \frac{\beta}{2}$.
$\frac{-2}{3}$ or -.667 .

$$
\begin{aligned}
\cos \frac{\beta}{2} & = \pm \sqrt{\frac{1+\cos \beta}{2}}= \pm \sqrt{\frac{1-1 / 9}{2}} \\
& = \pm \sqrt{\frac{4}{9}}= \pm \frac{2}{3}
\end{aligned}
$$

3. In Figure $3, \theta_{1}+\theta_{2}=45^{\circ}$. Find BC.

$$
\begin{aligned}
\tan \theta_{2} & =\tan \left(45^{\circ}-\theta_{1}\right) \\
& =\frac{\tan 45^{\circ}-\tan \theta_{1}}{1+\left(\tan 45^{\circ}\right)\left(\tan \theta_{1}\right)} \\
& =\frac{1-1 / 3}{1+1 / 3}=\frac{2 / 3}{4 / 3}=\frac{1}{2} \\
& x=\sqrt{10} \cdot \tan \theta_{2}=\sqrt{10} \cdot \frac{1}{2}
\end{aligned}
$$

4. $A B C D$ is a kite-shaped quadrilateral (Figure 4) with $B C=C D$ and $A B=A D=x$. $m \angle B A D=45^{\circ} ; m \angle B C D=135^{\circ}$. From D, drop a line perpendicular to $\overline{A B}$, meeting $\overline{A C}$ at E, and $\overline{A B}$ at F.

Find $E F$ in terms of x.
$\mathbf{E F}=x \cdot \frac{2-\sqrt{2}}{2}$ or $0.293 \cdot x$

$$
\begin{gathered}
\tan \frac{45^{\circ}}{2}=\frac{B C}{x}=\frac{1-\cos 45^{\circ}}{\sin 45^{\circ}}=\frac{1-(\sqrt{2} / 2)}{(\sqrt{2} / 2)}=\frac{2-\sqrt{2}}{\sqrt{2}}=\sqrt{2}-1 \\
\sin 45^{\circ}=\frac{F D}{x} \Rightarrow F D=x \cdot \frac{\sqrt{2}}{2}=A F \\
\frac{A F}{A B}=\frac{E F}{B C} \Rightarrow \frac{x \cdot \frac{\sqrt{2}}{2}}{x}=\frac{E F}{x(\sqrt{2}-1)} \Rightarrow E F=x \cdot(\sqrt{2}-1) \cdot \frac{\sqrt{2}}{2}, \text { etc. }
\end{gathered}
$$

Minnesota State High School Mathematics League

 Individual Event
2008-09 Event 2D SOLUTIONS

1. Write the equation of the line which passes through the origin and is parallel to $2 x-3 y=7$.
$y=\frac{2}{3} x$ or $2 x-3 y=0$.
$2 x-3 y=7$ has slope $\frac{-A}{B}=\frac{-(2)}{(-3)}=\frac{2}{3}$,
and any line through the origin has y-intercept $=0$.
2. Find the intersection point of the lines $y=\frac{7}{5} x-10$ and $y=\frac{3}{4} x$.
$(x, y)=\left(\frac{200}{13}, \frac{150}{13}\right)$ or $(15.385,11.538)$

$$
\begin{gathered}
\frac{3}{4} x=\frac{7}{5} x-10 \Rightarrow\left(\frac{15}{20}-\frac{28}{20}\right) x=-10 \\
\frac{-13}{20} x=-10 \Rightarrow x=\frac{200}{13} \\
y=\frac{3}{4} x=\frac{3}{\not 4} \cdot \frac{50}{13}=\frac{200}{13}
\end{gathered}
$$

3. Find all ordered pairs (x, y) that satisfy

$$
\left\{\begin{array}{c}
x^{2}+y^{2}=5 \\
x^{2}+(y+4)^{2}=6^{2}
\end{array}\right.
$$

$(x, y)=\left(\pm \frac{\sqrt{95}}{8}, \frac{15}{8}\right)$

$$
\begin{aligned}
& \text { Subtracting eqn. } 1 \text { from eqn. } 2 \text { yields } \\
& \qquad \begin{array}{c}
y^{2}+8 y+16-y^{2}=36-5 \\
8 y=15 \Rightarrow y=\frac{15}{8}
\end{array} \\
& x^{2}+\left(\frac{15}{8}\right)^{2}=x^{2}+\frac{225}{64}=5 \Rightarrow x^{2}=\frac{95}{64}
\end{aligned}
$$

Graders: deduct 1 point for omitting \pm, or for placing \pm on the y-coordinate.
(If a student makes both mistakes, give no credit.)
4. Two lines intersect in the $x y$-plane. The first line has x-intercept $2 p$ and y-intercept $2 p$, while the second line has x-intercept p and y-intercept $3 p$. If their intersection point is concurrent with the line $x=3$, find p. (Credit: 1998 NC HS Math Contest)
$p=6 .\left\{\begin{array}{c}\frac{x}{2 p}+\frac{y}{2 p}=1 \\ \frac{x}{p}+\frac{y}{3 p}=1\end{array} \Rightarrow\left\{\begin{array}{c}x+y=2 p \\ 3 x+y=3 p\end{array} \Rightarrow 2 x=p=6\right.\right.$, since $x=3$.

Minnesota State High School Mathematics League Team Event

2008-09 Meet 2

SOLUTIONS

1. If a, b, and c are distinct in the system $\left\{\begin{array}{l}a^{3}+3 a=-14 \\ b^{3}+3 b=-14 \\ c^{3}+3 c=-14\end{array}\right.$, find the value of $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$. or -0.214 .
2. The altitude and the median from vertex A of triangle $A B C$ are 4 and 5 units long, respectively. The altitude bisects the angle determined by side $\overline{A B}$ and the median. Find $A C$.

$\sqrt{97}$ or 9.849 .

3. Referring to problem \#3 from Event A, Don bought a new calculator to replace his old one. Sadly, this new calculator also inputs integers incorrectly. It interprets the odd integer n as $4 n$, and the even integer m as $m+5$. When Don used the new calculator to multiply the positive integers a and b, the result was 4444 . Find the smallest possible value that the calculator would return for the sum $a+b$.

145.

4. Susan, who had no calculator available, was asked to solve $\sqrt{6} \cos x+\sqrt{2} \sin x=2$. She squared both sides and simplified to get the equation $2 \cos ^{2} x+b \sin 2 x=1$. In exact form, what is b ?

$2 \sqrt{3}$. Graders: Note that the problem requires this answer in exact form.

5. Points A and B are on the same side of line m and are 5 and 7 units away from m, respectively. A and B are 17 units apart. For all points P on line m, what is the smallest possible value of $A P+B P$?
$\sqrt{429}$ or 20.712 .
6. In a triangle, the lengths of the three medians are 9,12 , and 15 . Find the length of the side to which the longest median is drawn.
7. a, b, and c are actually the three roots of $x^{2}+3 x+14=0$.

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a b+a c+b c}{a b c}=\frac{-3}{14} . \quad \begin{aligned}
& \text { (This last step uses Vieta's Formulas, which relate the } \\
& \text { coefficients of a polynomial to its roots. For more info:) }
\end{aligned}
$$

http://www.artofproblemsolving.com/Resources Papers/PolynomialsAK.pdf
2.

Drawing a good picture can make problems easy:
Triangles $A E D$ and $A E B$ are both $3-4-5$, and since
$\overline{A D}$ is a median, $B D=C D=6$.
Applying the Pyth. Thm. to right triangle AEC,

$$
x^{2}=4^{2}+9^{2}=97 \Rightarrow x=\sqrt{97} .
$$

3. Don's calculator turns even numbers into odds, and odds into multiples of 4. So, for a product to equal $4444=4 \cdot 1111$, one of the original numbers must be odd (to become a multiple of 4), while the other must be even (to become odd by adding 5). Suppose a is odd and b is even.
Then $4 a(b+5)=4444 \Rightarrow a(b+5)=1111$. Either $1111=11 \cdot 101$, or $1111=1 \cdot 1111$.
Since b is positive, $b+5$ can only equal 11, 101, or 1111, yielding $b=6,96$, or 1106 .
This forces $a=101,11$, or 1 , respectively. Don's calculator will output $a+b$ as $(4 a)+(b+5)$.
Checking all three possible pairs of integers (a, b), the smallest sum is $(4 \cdot 11)+(96+5)=145$.
4.

$$
\begin{aligned}
(\sqrt{6} \cos x+\sqrt{2} \sin x)^{2} & =(2)^{2} & & 4 \cos ^{2} x+(2)+2 \sqrt{3} \sin 2 x=4 \\
6 \cos ^{2} x+2 \sqrt{12} \sin x \cos x+2 \sin ^{2} x & =4 & & 4 \cos ^{2} x+2 \sqrt{3} \sin 2 x=2
\end{aligned}
$$

$$
4 \cos ^{2} x+\left(2 \cos ^{2} x+2 \sin ^{2} x\right)+2 \sqrt{3}(2 \sin x \cos x)=4
$$

6. In the diagram, median $\overline{B E}$ is extended to point P so that $M E=E P$. The lengths of $A M, M E$, and $M C$ are all determined by the fact that the centroid divides each median into segments of length ratio $2: 1$. Since AC and MP bisect each other, AMCP is a parallelogram. Further, AMP is a 6-8-10 triangle, so $\angle M A P=90^{\circ}$, and $A M C P$ is a rectangle! $A C=M P=10$.

