

## Minnesota State High School Mathematics League Individual Event

## 2008-09 Event 1A

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

## $\frac{5}{6}$

1. Express $\frac{1}{2}+\frac{1}{4}+\frac{1}{12}$ as the quotient of two relatively prime numbers.
$4 / 21$ 2. Express $12.5 \%$ of $\frac{.0032}{.0018+.0003}$ as the quotient of two relatively prime numbers.
$\qquad$ 3. [Here is a slight modification of a problem credited to the well known mathematician, Paul Halmos] A watermelon weighs 500 pounds, $99 \%$ of its weight being due to the water it contains. After it sat in a drying room for a while, it lost 250 pounds of water. What percent of its weight was then water?
2. Three positive integers $L, M$, and $N$ satisfying $L<M<N$, have a greatest common divisor of 12 and a least common multiple of 180. Find all possible triples $(L, M, N)$.
$(12,36,60)(12,36,180)(12,60,180),(36,60,180)$ $\left\{\begin{array}{l}\text { Graders: Awand } 1 \text { point } \\ \text { if only three, all correct, } \\ \text { are given }\end{array}\right.$
3. $\frac{6+3+1}{12}=\frac{10}{12}=\frac{5}{6}$
4. $\frac{1}{8} \cdot \frac{32}{18+3}=\frac{4}{21}$
5. In the beginning, it contains $.99(500)=495$ pounds of water. Later it contains 495-250 $=245$ pounds of water, and it weighs non-water content + water $=5+245=250$ pounds. To water $=\frac{245}{250}=.98$
6. g.c.d $=2 \cdot 2 \cdot 3$
l.c.m $=2 \cdot 2 \cdot 3 \cdot 3 \cdot 5$

Possibilities:
$L \quad M \quad N$
$2.2 \cdot 3 \quad 2.2 \cdot 3 \cdot 3 \quad 2 \cdot 2 \cdot 3 \cdot 5$
2.2.3
2.2.3.3
2.2.3.3.5
$2 \cdot 2 \cdot 3$
2. $2 \cdot 3 \cdot 5$
$2 \cdot 2 \cdot 3 \cdot 3 \cdot 5$
$2.2 \cdot 3 \cdot 3$
2.2.3.5
2.2.3.3.5

Triples are, therefore
$(12,36,60)$
$(12,36,180)$
$(12,60,180)$
$(36,60,180)$


# Minnesota State High School Mathematics League 

 Individual Event
## 2008-09 Event 1B

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.
4. In quadrilateral ABCD (Figure 4), $\angle A B C=42^{\circ}$. Furthermore, if $A B$ is extended to $E$ so that $A B=B E$, then $\angle A C E=90^{\circ}$. What is the measure of $\angle A E C$ ?

4.



## Minnesota State High School Mathematics League <br> Individual Event

## 2008-09 Event 1C

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

1. For the second quadrant angle pictured in Figure 1, find $\sin \alpha+\tan \alpha$.

## $\frac{7 \pi}{6}$

$\qquad$ 2. Express as a multiple of $\pi$ the radian measure of an angle in the third quadrant that has a sine of $-\frac{1}{2}$.
3. Figure 3 shows the graph, but without scales on the axes, of $y=2 \sin \frac{4}{3} x$. After placing scales on the axes, give the letter labeling the point on the graph having an $x$-coordinate of
(a) $\pi$ $\qquad$ (b) $\frac{\pi}{2} \xrightarrow{C}$

2850
4. Round to the nearest multiple of 50 the number of $x$ intercepts on the graph of $y=\sin \frac{1}{x}$ when $0.0001<x<0.001$. That is, to the nearest 50 , how many times will the graph of $y=\sin \frac{1}{x}$ cross the $x$-axis between 0.0001 and 0.001 ?
1.


Figure 1

$$
\begin{aligned}
& \sin \alpha+\tan \alpha=\frac{3}{5}-\frac{3}{4} \\
& =\frac{12-15}{20}=-\frac{3}{20}
\end{aligned}
$$

2. $\sin x=-\frac{1}{2}$

3. We seek $k$ for which $\frac{1}{10,000}<\frac{1}{k \pi}<\frac{1}{1000}$

$$
\begin{aligned}
& k \pi<10,000 \Rightarrow k<\frac{10,000}{\pi} \approx 3183 \\
& k \pi>1,000 \Rightarrow k>\frac{1000}{\pi} \approx \frac{318}{2865} \approx 2850
\end{aligned}
$$



Minnesota State High School Mathematics League Individual Event

2008-09 Event 1D
The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.
$1,-5$ 1. Find all the solutions to $x^{2}+4 x+4=9$.
$-\frac{9}{2}, 5$
2. Find all the solutions to $(2 x-3)(x+1)=42$.
3. Write the equation of the parabola passing through $(3,7),(1,4)$ and $(5,4)$. Write your answer in the form $y=a x^{2}+b x+c$ OR $x=a y^{2}+b y+c$, whichever form fits

$$
y=-\frac{3}{4} x^{2}+\frac{\text { the situation. }}{2} x+1 / 4
$$

$-4 / 3 \quad 4$. Find the smallest root of $6 x^{3}-13 x^{2}-19 x+12=0$
1.

$$
\begin{aligned}
& (x+2)^{2}=9 \\
& x+2= \pm 3 \\
& x=1,-5
\end{aligned}
$$

2. $2 x^{2}-x-3=42$

$$
2 x^{2}-x-45=0
$$

$$
(2 x+9)(x-5)=0
$$

$x=-\frac{9}{2} ; \quad x=5$
3.

$$
\begin{aligned}
& y-7=a(x-3)^{2} \\
& \text { When } x=1, y=4 \\
& 4-7=a(4) \\
& a=-\frac{3}{4} \\
& 4(y-7)=-3\left(x^{2}-6 x+9\right) \\
& 4 y-28=-3 x^{2}+18 x-27 \\
& y=-\frac{3}{4} x^{2}+\frac{9}{2} x+\frac{1}{4}
\end{aligned}
$$



## Minnesota State High School Mathematics League

Team Event

## 2008-09 Meet 1

Each question is worth 4 points. Team members may cooperate in any way, but at the end of twenty minutes, one set of answers is to be submitted. Put answers on the lines provided.

1. Isosceles $\triangle A B C$ (Figure 1) has base angles $\angle A=\angle B=70^{\circ}$. $A E$ makes an angle of $\theta$ with the $A B$, and $\theta$ varies as $E$ moves up and down $B C$. $D E$ is parallel to $A B$, and of course it too moves up or down with $E$. The extensions of $D E$ to $D F$ and $A E$ to $A G$ form angles $\alpha=\angle F E G$ and $\beta=\angle G E C$. What will be the measure of $\theta$ when $\alpha=\beta$ ? [AHSME, 1968, Number 18]

Lost
OR
2. Having purchased 200 shares of a stock at one price, and another 200 shares at a higher price, Mr. Gotbucks later sold all 400 shares for $\$ 30$ each. He thereby gained $20 \%$ on the first 200 shares, but lost $20 \%$ on the other 200 shares. How much did he gain or lose at the time of the sale?
Gamed
6. 3. How many ordered pairs $(a, b)$ of positive integers exist such that $\frac{1}{a}+\frac{5}{b}=\frac{1}{2}$ ?
$360^{\circ}$ 4. Find the measure in degrees of the sum of angles $A, B, C, D$, and $F$ in Figure 4. [AHSME, 1972, Number 21]

663 5. Consider the set of composite positive integers between 47 and the next largest prime. Let $L$ be the least common multiple of this set, and le $S$ be the largest integer such that $S^{2}$ is a factor of $L$. What is the value of $\frac{L}{S^{2}}$ ?
$10^{\circ}$ 6. In $\triangle A D E, \angle A D E=140^{\circ}$, points B and C lie on sides AD and AE respectively, and point $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and E , are distinct. If $A B=B C=C D=D E$, what is the measure of $\angle E A D$ ? [AHSME, 1978, Number 12]

Team $\qquad$


Figure 1


A
When $\alpha=\angle F E G=\angle G E C$
then $\angle A E B=\alpha$ (vertical $L$ 's)
and $\angle B A E=\angle F E G=\alpha$ (corresp. $\angle$ 's)
so $2 \alpha+70=180 \Rightarrow \alpha=55^{\circ}$
2. The first 200 purchased at ${ }^{*} x /$ share
sold at $30 /$ share. Gain $=200(30-x)=.2(200 x)$
Solving, purchase price $x=25$. He made $5(200)=\$ 1000$ on these shares.
The second 200 were purchased at $y /$ share, sold at ${ }^{\#} 30 /$ share. Loss $=200(y-30)=.2(200 y)$ Solving, purchase pace $y^{\prime}=\frac{75}{2}$. He lost

$$
\begin{aligned}
& \text { Solving, purchase price } \\
& \frac{15}{2}(200)=1500 \text {. He lost }(1500-1000)=500
\end{aligned}
$$

3. [Mass. Math Olympiad 2007-08]

$$
2 b+10 a=a b \text { so } a=\frac{2 b}{b-10}=2+\frac{20}{b-10}
$$

Since $a$ is an integer, $b-10$ divides 20. See the table. Negative values for $b-10$ give negative values for either $a$ or $b$.

| $b-10$ | $b$ | $a=2+\frac{20}{b-10}$ |
| :---: | :---: | :---: |
| 1 | 11 | 22 |
| 2 | 12 | 12 |
| 4 | 14 | 7 |
| 5 | 15 | 6 |
| 10 | 20 | 4 |
| 20 | 30 | 3 |

5. The set under considelation is:

$$
\begin{array}{ll}
48=2^{4} \cdot 3 & 51=3 \cdot 17 \\
49 & =7^{2} \\
50 & =2 \cdot 5^{2} \\
L C M & =2^{4} \cdot 3 \cdot 7^{2} \cdot 5^{2} \cdot 13 \cdot 17 \\
& =\left[\frac{\left.2^{2} \cdot 5 \cdot 7\right]^{2} \cdot 3 \cdot 13 \cdot 17}{5}\right]^{\frac{L}{5^{2}}}
\end{array}=3 \cdot 13 \cdot 17=663 .
$$



