

## Minnesota State High School Mathematics League Individual Event

## 2008-09 Event 1A

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

1. Express $\frac{1}{2}+\frac{1}{4}+\frac{1}{12}$ as the quotient of two relatively prime numbers.
2. Express $12.5 \%$ of $\frac{.0032}{.0018+.0003}$ as the quotient of two relatively prime numbers.
3. Here is a slight modification of a problem credited to the well known mathematician, Paul Halmos] A watermelon weighs 500 pounds, $99 \%$ of its weight being due to the water it contains. After it sat in a drying room for a while, it lost 250 pounds of water. What percent of its weight was then water?
4. Three positive integers $L, M$, and $N$ satisfying $L<M<N$, have a greatest common divisor of 12 and a least common multiple of 180 . Find all possible triples $(L, M, N)$.
$\qquad$
$\qquad$


## Minnesota State High School Mathematics League

 Individual Event
## 2008-09 Event 1B

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

1. The isosceles $\triangle A B C$ in Figure 1 has vertex $\angle C=40^{\circ}$. A point $D$ is chosen on $B C$ so that $A D=A B$. What is the measure in degrees of $\angle D A C$ ?
2. In the right $\triangle A B C$, the bisectors of the acute angles $B$ and $C$ meet at $D$ to form an isosceles $\triangle B C D$. What is the measure in degrees of $\angle B D C$ ?
3. The vertices of a regular pentagon, labeled in a counterclockwise direction, are $A B C D E$. What is the angle measure of $\angle D A E$ ?
4. In quadrilateral ABCD (Figure 4), $\angle A B C=42^{\circ}$. Furthermore, if $A B$ is extended to $E$ so that $A B=B E$, then $\angle A C E=90^{\circ}$. What is the measure of $\angle A E C$ ?


Figure 4
Figure 1
$\qquad$ Team $\qquad$


## Minnesota State High School Mathematics League <br> Individual Event

## 2008-09 Event 1C

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

1. For the second quadrant angle pictured in Figure 1, find $\sin \alpha+\tan \alpha$.
2. Express as a multiple of $\pi$ the radian measure of an angle in the third quadrant that has a sine of $-\frac{1}{2}$
3. Figure 3 shows the graph of $y=2 \sin \frac{4}{3} x$. No scale markings are shown on the axes, but certain points on the graph have been labeled. Write the label of the point on the graph having an $x$-coordinate of
(a) $\pi$ $\qquad$ (b) $\frac{\pi}{2}$
$\qquad$
4. Round to the nearest multiple of 50 the number of $x$ intercepts on the graph of $y=\sin \frac{1}{x}$ when $0.0001<x<0.001$. That is, to the nearest 50 , how many times will the graph of $y=\sin \frac{1}{x}$ cross the $x$-axis between 0.0001 and 0.001 ?


Figure 1


Name $\qquad$ Team $\qquad$

## Minnesota State High School Mathematics League Individual Event

## 2008-09 Event 1D

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

## NO CALCULATORS ON THIS EVENT

1. Find all the solutions to $x^{2}+4 x+4=9$.
2. Find all the solutions to $(2 x-3)(x+1)=42$.
3. Write the equation of the parabola passing through $(3,7),(1,4)$ and $(5,4)$. Write your answer in the form $y=a x^{2}+b x+c$ OR $x=a y^{2}+b y+c$, whichever form fits the situation.
4. Find the smallest root of $6 x^{3}-13 x^{2}-19 x+12=0$.
$\qquad$


## Minnesota State High School Mathematics League Team Event

## 2008-09 Meet 1

Each question is worth 4 points. Team members may cooperate in any way, but at the end of twenty minutes, one set of answers is to be submitted. Put answers on the lines provided.

1. Isosceles $\triangle A B C$ (Figure 1) has base angles $\angle A=\angle B=70^{\circ}$. $A E$ makes an angle of $\theta$ with $\quad A B$, and $\theta$ varies as $E$ moves up and down $B C$. $D E$ is parallel to $A B$, and of course it too moves up or down with $E$. The extensions of $D E$ to $D F$ and $A E$ to $A G$ form angles $\alpha=\angle F E G$ and $\beta=\angle G E C$. What will be the measure of $\theta$ when $\alpha=\beta$ ? \{AHSME, 1968, Number 18]
2. Having purchased 200 shares of a stock at one price, and another 200 shares at a

## Lo.s

ur

Grined higher price, Mr. Gotbucks later sold all 400 shares for $\$ 30$ each. He thereby gained $20 \%$ on the first 200 shares, but lost $20 \%$ on the other 200 shares. How much did he gain or lose at the time of the sale?
3. How many ordered pairs $(a, b)$ of positive integers exist such that $\frac{1}{a}+\frac{5}{b}=\frac{1}{2}$ ?
4. Find the measure in degrees of the sum of angles $A, B, C, D, E$ and $F$ in Figure 4. [AHSME, 1972, Number 21]
5. Consider the set of composite positive integers between 47 and the next largest prime. Let $L$ be the least common multiple of this set, and let $S$ be the largest integer such that $S^{2}$ is a factor of $L$. What is the value of $\frac{L}{S^{2}}$ ?
6. In $\triangle A D E, \angle A D E=140^{\circ}$, points B and C lie on sides AD and AE respectively, and point $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and E , are distinct. If $A B=B C=C D=D E$, what is the measure of $\angle E A D$ ? [AHSME, 1978, Number 12]

Team $\qquad$


Figure 1


Figure 4

