

Minnesota State High School Mathematics League
 Individual Event

2007-08 Event 2A SOLUTIONS

1. $\frac{54}{11} 27 \ddagger 6=\frac{27 \cdot 6}{27+6}=\frac{27 \cdot 6^{2}}{33_{11}}=\frac{54}{11}$
2. $T=0.15 \cdot I-374$
rate of change $=\frac{3241-3226}{24,100-24,000}=\frac{15}{100}=0.15$
Using the point-slope method,

Income(I)	Tax(T)
24,000	3226
24,100	3241
24,200	3256
24,300	3271

$$
\begin{aligned}
(T-3226) & =0.15(I-24000) \\
T-3226 & =0.15 I-3600 \quad \Leftrightarrow \quad T=0.15 \cdot I-374
\end{aligned}
$$

3. $\quad N=\frac{8}{11} R+\frac{36}{11} \quad$ Apply the operations to N, one at a time:

$$
\begin{array}{r}
N \rightarrow(N-5) \rightarrow 3(N-5) \rightarrow 3(N-5)+6 \rightarrow 4[3(N-5)+6] \\
\quad \rightarrow 4[3(N-5)+6]-N \rightarrow 0.125(4[3(N-5)+6]-N)
\end{array}
$$

Now simplify the final expression:

$$
\begin{array}{rlr}
0.125(4[3(N-5)+6]-N) & =0.125(4[3 N-9]-N) & \\
& =0.125(11 N-36) & \text { Solving for } N, \text { we obtain } \\
& =\frac{11 N-36}{8}=R & N=\frac{8}{11} R+\frac{36}{11}
\end{array}
$$

4. $m=15, n=21$ (m and n can, of course, be interchanged in the solution.)

If $G C D=1$, then $L C M=103$, which is prime and cannot be the product of 4 primes.
If GCD $=2$, then $\mathrm{LCM}=104=(2)(2)(2)(13)$, but since $(\mathrm{GCD})(\mathrm{LCM})=(m)(n)$, one of
the two integers must have more than "exactly two" prime factors.
If $\mathrm{GCD}=3$, then $\mathrm{LCM}=105=(3)(5)(7)$, leading to the solution $m=15, n=21$.
How can we prove that this is the only answer? Watch the League Notes for a proof...

Minnesota State High School Mathematics League Individual Event

2007-08 Event 2B SOLUTIONS

1. $3 \sqrt{3}$. Since $A C=9, B C=\frac{A C}{\sqrt{3}}=\frac{9}{\sqrt{3}}=3 \sqrt{3}$.

2. 72. Set each possible pair of sides equal, and solve for x :

$$
\begin{array}{rlrl}
3 x+91 & =4 x+19 & 4 x+19 & =5 x+1 \\
72 & =x & 18 & =x
\end{array} 3 x+91=5 x+1
$$

Verify these values of x using the Triangle Inequality... then the largest x is 72 .
3. $7-2 \sqrt{6}$.

Apply the Pythagorean Theorem to right triangle RNM:

$$
\begin{array}{rlrl}
(4-x)^{2}+(3-x)^{2} & =x^{2} & x & =\frac{14 \pm \sqrt{14^{2}-4 \cdot 25}}{2} \\
16-8 x+x^{2}+9-6 x+x^{2} & =x^{2} & & =7 \pm \sqrt{7^{2}-5^{2}} \\
x^{2}-14 x+25 & =0 & & =7 \pm 2 \sqrt{6}
\end{array}
$$

Since x is certainly less than 7 , the only possibility is $7-2 \sqrt{6}$.
4. $\frac{\sqrt{5}}{4}$

With the diagram labeled as shown, the Pyth. Thm. and the
2:1 ratio of intersecting medians combine to tell us that
$Y H=H X=\sqrt{g^{2}+4 h^{2}}$, and $Z G=G X=\sqrt{h^{2}+4 g^{2}}$.
The given ratio says that $4 G X=3 H X$, which, after squaring both sides, simplifies to $g=\frac{2}{\sqrt{11}} h$.

$$
\frac{G H}{H Y}=\frac{\sqrt{g^{2}+h^{2}}}{\sqrt{g^{2}+4 h^{2}}}=\frac{\sqrt{\frac{15}{11} h^{2}}}{\sqrt{\frac{48}{11} h^{2}}}=\frac{\sqrt{15}}{\sqrt{48}}=\frac{\sqrt{5}}{\sqrt{16}}=\frac{\sqrt{5}}{4}
$$

Minnesota State High School Mathematics League
 Individual Event

2007-08 Event 2C SOLUTIONS

1. 13°. Using the sine/cosine cofunction identity, $\sin (2 x+8)=\cos (5 x-9)$ is true when $(2 x+8)=90-(5 x-9)$. Solve for x to obtain 13°.
2. 244°. Realizing that $-\sqrt{\frac{1+\sin 38^{\circ}}{2}}=-\sqrt{\frac{1+\cos 52^{\circ}}{2}}$, we recognize the half-angle formula for cosine. Since $+\sqrt{\frac{1+\cos 52^{\circ}}{2}}=\cos 26^{\circ},-\sqrt{\frac{1+\cos 52^{\circ}}{2}}=-\cos 26^{\circ}$.
So $\sin x=-\cos 26^{\circ}=\cos 154^{\circ}=\sin (90-154)^{\circ}=\sin (-64)^{\circ}=\sin 296^{\circ}=\sin 244^{\circ}$, and the smallest positive x is 244°.
3. $\left(\frac{90}{11}\right)^{\circ}$

Using the given hint,

$$
\begin{aligned}
& \sec 5 x=\tan 3 x+\tan 5 x \\
& \frac{1}{\cos 5 x}=\frac{\sin 3 x}{\cos 3 x}+\frac{\sin 5 x}{\cos 5 x}
\end{aligned}
$$

Multiplying both sides by $(\cos 3 x)(\cos 5 x)$ reveals the sum identity for sine:

$$
\cos 3 x=\sin 3 x \cos 5 x+\cos 3 x \sin 5 x=\sin 8 x
$$

So $3 x+8 x=90^{\circ}$, and $x=\left(\frac{90}{11}\right)^{\circ}$.
4.

Multiply both sides by $16 \sin x$:

$$
16(\cos 8 x)(\cos 4 x)(\cos 2 x)(\cos x)(\sin x)=\sin x
$$

Now, repeatedly, use factors of two along with the double angle formula for sine:
$8(\cos 8 x)(\cos 4 x)(\cos 2 x)(\sin 2 x)=4(\cos 8 x)(\cos 4 x)(\sin 4 x)=2(\cos 8 x)(\sin 8 x)$
So $\sin 16 x=\sin x \Rightarrow 16 x+x=180^{\circ}$, and $x=\left(\frac{180}{17}\right)^{\circ}$.

Minnesota State High School Mathematics League

2007-08 Event 2D SOLUTIONS

1. -6. $2 y+x+3=0 \Leftrightarrow y=\frac{-1}{2} x+\frac{3}{2}$, which is a line with slope $\frac{-1}{2}$.
$3 y+a x+2=0 \Leftrightarrow y=\frac{-a}{3} x-\frac{2}{3}$, which is a line with slope $\frac{-a}{3}$.
The lines are perpendicular, so $\left(\frac{-1}{2}\right)\left(\frac{-a}{3}\right)=-1$, and $a=-6$.
2. $\left(\frac{r}{r^{2}+1}, \frac{r}{r^{2}+1}\right)$

First find the equation of the line through the two intercepts $(r, 0)$ and $(0,1 / r)$: slope $=\frac{1 / r}{-r}=\frac{-1}{r^{2}}$, so using slope-intercept form, $y=\frac{-1}{r^{2}} x+\frac{1}{r}$.

Now let $y=x: \quad x=\frac{-1}{r^{2}} x+\frac{1}{r} \Leftrightarrow\left(1+\frac{1}{r^{2}}\right) x=\frac{1}{r} \Leftrightarrow\left(\frac{r^{2}+1}{r^{2}}\right) x=\frac{1}{r} \Leftrightarrow x=\frac{r}{r^{2}+1}$,
and the desired point of intersection is $(x, y)=\left(\frac{r}{r^{2}+1}, \frac{r}{r^{2}+1}\right)$.
3. 4015. Three noncollinear points determine a circle, so we know that $(-2,-3),(2,5)$, and $(2007, y)$ must be collinear. The midpoint of $(-2,-3)$ and $(2,5)$ is $(0,1)$, quickly defining the line $y=2 x+1 . \therefore$ the desired y equals $2(2007)+1=4015$.
4. 5 and 845. Noting that the point of tangency must be $(h, 0)$, forcing $r=k$, we write:

Graders: No partial credit; both answers must be present.
$\left\{\begin{array}{l}(1-h)^{2}+(9-r)^{2}=r^{2} \\ (8-h)^{2}+(8-r)^{2}=r^{2}\end{array} \Rightarrow\left\{\begin{array}{r}1-2 h+h^{2}+81-18 r=0 \\ 64-16 h+h^{2}+64-16 r=0\end{array}\right.\right.$
Subtracting, $-46+14 h-2 r=0$, and $h=\frac{r+23}{7}$.

$$
(1-h)^{2}+(9-r)^{2}=r^{2} \Rightarrow\left[\frac{-1}{7}(r+16)\right]^{2}+81-18 r=0 \Rightarrow r^{2}-850 r+4225=0
$$

Applying the quadratic formula, we find $r \in\{5,845\}$.

Minnesota State High School Mathematics League

2007-08 Meet 2
 SOLUTIONS

1. $y=\frac{3}{4} x+1$ or $y=\frac{3}{4} x+11$. The normal form of the given line is $\frac{3 x-4 y}{5}=-\frac{24}{5}$.

The desired line(s) are 4 units away along the normal: $\quad \frac{3 x-4 y}{5}=-\frac{24}{5} \pm 4$
Therefore, there are two possible parallel lines: $y=\frac{3}{4} x+1$ or $y=\frac{3}{4} x+11$.
2. 110. Given that we desire a solution in base a, it would be convenient to express the Pythagorean triples in terms of a :

a	3	5	7	9
b	4	12	24	40
c	5	13	25	41
$b+c$	9	25	49	81

Noticing that $b+c=a^{2}$, we can soon see that $b=\frac{a^{2}-1}{2}$ and $c=\frac{a^{2}+1}{2}$.
The perimeter is $a+b+c=a+\frac{a^{2}-1}{2}+\frac{a^{2}+1}{2}=a^{2}+a$, which in base a always equals 110 .
3. 17° and 101°. Using unit circle relationships, the system can be rewritten as follows:

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\text { Graders: No partial } \\
\text { credit; both answers } \\
\text { must be present. }
\end{array}
\end{array} \begin{array}{l}
\left\{\begin{array} { l }
{ x \cdot \operatorname { c o s } 1 1 ^ { \circ } - y \cdot \operatorname { s i n } 1 4 9 ^ { \circ } = \operatorname { s i n } \alpha } \\
{ x \cdot \operatorname { c o s } 1 0 1 ^ { \circ } + y \cdot \operatorname { c o s } 3 1 ^ { \circ } = \operatorname { c o s } \alpha }
\end{array} \Rightarrow \left\{\begin{array}{c}
x \cdot \cos 11^{\circ}-y \cdot \sin 31^{\circ}=\sin \alpha \\
x \cdot-\sin 11^{\circ}+y \cdot \cos 31^{\circ}=\cos \alpha
\end{array}\right.\right. \\
\text { Using Cramer's Rule, }
\end{array} \\
& \qquad x=\frac{D_{x}}{D}=\frac{\left|\begin{array}{rr}
\sin \alpha & -\sin 31^{\circ} \\
\cos \alpha & \cos 31^{\circ}
\end{array}\right|}{\left|\begin{array}{cc}
\cos 11^{\circ} & -\sin 31^{\circ} \\
-\sin 11^{\circ} & \cos 31^{\circ}
\end{array}\right|}=\frac{\sin \alpha \cos 31^{\circ}+\cos \alpha \sin 31^{\circ}}{\cos 11^{\circ} \cos 31^{\circ}-\sin 11^{\circ} \sin 31^{\circ}}=\frac{\sin (31+\alpha)^{\circ}}{\cos (31+11)^{\circ}}
\end{aligned}
$$

Since we wish x to equal 1 , we need $\sin (31+\alpha)^{\circ}=\cos 42^{\circ}=\sin 48^{\circ}$ or $\sin 132^{\circ}$, which occurs when $\alpha \in\left\{17^{\circ}, 101^{\circ}\right\}$.

Graders: Give 1 point for each correct ordered pair.

Each graph is comprised of the union of points on two intersecting lines. $(x-y+2)(3 x+y-4)=0$ involves the lines $y=x+2$ and $y=-3 x+4$, while $(x+y-2)(x-5 y+7)=0$ involves the lines $y=-x+2$ and $y=\frac{1}{5} x+\frac{7}{5}$.

There will be four points of intersection, created by pairing one line from each graph:

$$
\begin{aligned}
& y=x+2 \text { and } y=-x+2 \Rightarrow x+2=-x+2 \Rightarrow(x, y)=(0,2) \\
& y=x+2 \text { and } y=\frac{1}{5} x+\frac{7}{5} \Rightarrow x+2=\frac{1}{5} x+\frac{7}{5} \Rightarrow(x, y)=\left(-\frac{3}{4}, \frac{5}{4}\right) \\
& y=-3 x+4 \text { and } y=-x+2 \Rightarrow-3 x+4=-x+2 \Rightarrow(x, y)=(1,1) \\
& y=-3 x+4 \text { and } y=\frac{1}{5} x+\frac{7}{5} \Rightarrow-3 x+4=\frac{1}{5} x+\frac{7}{5} \Rightarrow(x, y)=\left(\frac{13}{16}, \frac{25}{16}\right)
\end{aligned}
$$

5. $x=(a+b)-\sqrt{2 a b}$.

A similar solution method to that used in problem 3 of Event B, beginning with $\triangle R N X$:

$$
\begin{aligned}
x & =\frac{2(a+b) \pm \sqrt{4(a+b)^{2}-4 c^{2}}}{2} \\
& =(a+b) \pm \sqrt{a^{2}+2 a b+b^{2}-c^{2}} \\
& =(a+b) \pm \sqrt{2 a b}
\end{aligned}
$$

Since $x<a$, it cannot be greater than $(a+b)$. Therefore, $x=(a+b)-\sqrt{2 a b}$.
(Note that even this value of x is too big when beginning with a 5, 12, 13 right triangle. Can you find the class of right triangles for which x exists?)
6. 45. Using the formula $P=r t$, we generate the following table:

	P (papers)	r (papers/min)	t (minutes)
Sarah	60	S	90
Ryan	35	R	X
together	91	$S+R$	63

Since $60=S \cdot 90, S=\frac{2}{3}$. Then $91=(S+R) 63 \Rightarrow S+R=\frac{13}{9}$, and $R=\frac{7}{9}$.
Finally, $35=R X=\frac{7}{9} X$, and $X=35 \cdot \frac{9}{7}$, or 45 minutes.

