

Minnesota State High School Mathematics League Individual Event

2006-07 Event 2A

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

5/2
$\frac{8}{5 a}$
$\frac{16}{3}$
2. Find x if $3(a x-3)-2(a x-2)=5(a x-2)+a x-3$.
3. There is an interval on the x -axis for which $5(x-2) \geq 2(x-7)$ and $11-4 x \geq-5$. How long is this interval?
\qquad 4. I notice when riding in a light rail car that there is a distinct clicking sound each time the wheels come to a new section of track. If I begin timing myself just after I hear a click, for how many seconds should I count so that the number of clicks counted will equal the speed of the train in miles per hour? (There are 5280 feet in a mile, and the sections of rail are 22 feet long.)

$$
\text { 1. } \begin{aligned}
4 x-28 & =6 x-33 \\
5 & =2 x \\
x= & 5 / 2 \\
2(a x-3) & =7(a x-2) \\
2 a x-6 & =7 a x-14 \\
8 & =5 a x \\
x & =8 / 5 a
\end{aligned}
$$

4. A train traveling $n \mathrm{mph}$ travels

$$
\frac{5280}{3600} n=\frac{22 n}{15} \mathrm{ft} / \mathrm{sec} .
$$

$$
\text { If the rails are } 22 \text { feet long, }
$$

$$
\text { we will count } \frac{n}{15} \text { clicks/sec. }
$$

$$
\text { We want } \frac{n}{15} \text { (seconds counting) }=n \text {. }
$$

3. $5 x-10 \geq 2 x-14$ $\begin{aligned} 3 x & \geq-4 \\ x & \geq-4 / 3\end{aligned}$
$11-4 x \geq-5$

$$
-4 x \geq-16
$$

$$
\frac{1}{-2}\left[\begin{array}{ccc}
{[12} & 0 & x \leq 4 \\
2 & 0 & 4
\end{array}\right.
$$

$$
4-\left(-\frac{4}{3}\right)=\frac{12+4}{3}=\frac{16}{3}
$$

Minnesota State High School Mathematics League Individual Event

2006-07 Event 2B

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.
All questions refer to the Figure at the right which shows a right triangle $A B C$ with legs $B C=3, C A=4$. A line segment has been drawn from C to D so that $C D \perp A B$.

1. What is the length of $C D$?
$\frac{16}{3}$
2. Extend $C D$ until it intersects at E a line erected at A to be perpendicular to $A C$. Find the length of $A E$.
$\frac{36}{25}$
3. From D, drop a line perpendicular to $A C$, meeting $A C$ at F. What is the length of $C F$?
$\frac{\sqrt{193}}{3}=4.631$
4. What is the length of $B E$?
5.

$$
\begin{aligned}
& \frac{C D}{C B}=\frac{C A}{A B} \\
& \frac{C D}{3}=\frac{4}{5} \\
& C D=\frac{12}{5}
\end{aligned}
$$

2. $\triangle E C A \sim \triangle A B C$

$$
\text { 3. } \begin{array}{rlrl}
\triangle D C F \sim \triangle A B C & D A & =5-B D=5-\frac{9}{5}=\frac{16}{5} \\
\frac{C F}{C D} & =\frac{B C}{B A}=\frac{3}{5} & \triangle E A D \sim \triangle A B C \\
C F & =\frac{3}{5} \cdot \frac{12}{5}=\frac{36}{25} & \frac{D E}{D A} & =\frac{4}{3} \\
\text { 4. } B E^{2}=B D^{2}+D E^{2} & D E & =\frac{4}{3} \cdot \frac{16}{5}=\frac{64}{15} \\
\triangle C B D \sim \triangle A B C & \therefore B E^{2} & =\left(\frac{9}{5}\right)^{2}+\left(\frac{64}{15}\right)^{2} \\
\frac{B D}{B C} & =\frac{B C}{B A}=\frac{3}{5} & & =\frac{981}{9} \frac{16}{25}+\frac{(64)^{2}}{9 \cdot 25} \\
B D & =3\left(\frac{3}{5}\right)=\frac{9}{5} & & =\frac{25(193)}{9.25}=\frac{193}{9} . \\
B E & =\frac{\sqrt{193}}{3}=4.631
\end{array}
$$

Minnesota State High School Mathematics League

Individual Event

2006-07 Event 2C

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

1. Figure 1 shows a right triangle $A B C$ with legs $B C=3, C A=4$. Find $\sin (\angle A+\angle B)$.
2. In $\triangle A B C$ shown in Figure 1, let the line bisecting $\angle A$ intersect $B C$ at D. What is the length of $C D$?
3. Derive a formula for $\tan 3 \theta$ that involves $\tan \theta$ and no other trigonometric functions.
$\tan 3 \theta=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}$
$\angle A=45^{\circ}$ 4. In a certain $\triangle A B C, \quad \cos A \cos B+\sin A \sin B \sin C=1$. Find the measure in degrees of $\frac{\angle A=45^{\circ}}{\angle=\frac{45^{\circ}}{90^{\circ}}}$
$\frac{\angle C=90^{\circ}}{1 .}$
$\xrightarrow[\text { no }]{\angle A, \angle B \text {, and } \angle C \text {. }}$
[BKM-225]

$$
\sin (A+B)=1
$$

$$
\text { 3. } \tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}
$$

2. $\frac{C D}{4}=\tan \frac{\angle A}{2}$

$$
\tan (\theta+2 \theta)=\frac{\tan \theta+\tan 2 \theta}{1-\tan \theta \tan 2 \theta}
$$

$$
\begin{aligned}
& \text { Let } \alpha=\angle A \\
& \tan \frac{\alpha}{2}=\sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}=\sqrt{\frac{1-4 / 5}{1+4 / 5}}=\frac{1}{3} \\
& C D=4\left(\frac{1}{3}\right)
\end{aligned}
$$

$$
=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}
$$

4. Let the term $\cos A \cos B$ remind you that $\cos (A-B)=\cos A \cos B+\sin A \sin B$.

The given equation enables us to write this as $\cos (A-B)=[1-\sin A \sin B \sin C]+\sin A \sin B=1+\sin A \sin B(1-\sin C)$ Now $\cos (A-B) \leq 1$ while $1+\sin A \sin B(1-\sin C) \geq 1$. It follows that $1+\sin A \sin B(1-\sin C)=1$ $\sin A \sin B(1-\sin C)=0$
Since A and B are angles in a $\triangle, \sin A>0$ and $\sin B>0 ; 1-\sin C=0$. $C=90 . \cos (A-B)=1 \Rightarrow A-B=0 ; \quad A=B=45^{\circ}$

Minnesota State High School Mathematics League
 Individual Event

2006-07 Event 2D

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

1. Write an equation of the line tangent to the graph of the circle $x^{2}+y^{2}=5$ at $(2,1)$. $y=-2 x+5$
2. The graph of $x y=1$ is symmetric about the line L having equation $y=x$. Write the equation of the line tangent to the graph of $x y=1$ at the point where it crossed the line L in the third quadrant.

$$
y=-x-2
$$

3. Write an equation of the circle of radius $\sqrt{20}$ that is tangent to the graph of the line $x+2 y=5$ at $(3,1)$ and lies entirely in the first quadrant.

$$
-\quad(x-5)^{2}+(y-5)^{2}=20 \text { OR } x^{2}-10 x+y^{2}-10 y+30=0
$$

4.able A $30^{\circ}-60^{\circ}-90^{\circ} \triangle A B C$ with hypotenuse 3 and an isosceles right $\triangle E B D$ with hypo-

Minnesota State High School Mathematics League Team Event

2006-07 Meet 2

Each question is worth 4 points. Team members may cooperate in any way, but at the end of twenty minutes, one set of answers is to be submitted. Put answers on the lines provided.

1. In Event 2B, a 3-4-5 right $\triangle A B C$ was described in which a line was drawn from C to D on the hypotenuse making $C D \perp A B$. If coordinate axes are drawn with the origin at C and we have $A(4,0)$ and $B(0,3)$ (Figure 1), what will be the coordinates of D ?
2. Write in the form $A x+B y+C=0$ the equation of a line drawn in Figure 1 that is parallel to $A B$ and exactly 3 units below point C (i.e. the origin).
$3 x+4 y=15^{p}$
3. In Figure 1, let the bisectors of $\angle C A B$ and $\angle A B C$ intersect at E. Find the coordinates $(1,1)^{3}$ of E.
4. Write an equation of the circle of radius $\sqrt{20}$ that is tangent in the first quadrant to the graph of the line $x+2 y=5$ and passes through $(-5,-4)$.
$(x+1)^{2}+(y+2)^{2}=20$ OR $x^{2}+2 x+y^{2}+4 y=15$
5. The y-intercept of a line passing through $\left(\frac{5}{2}, 3\right)$ is $\frac{1}{3}$ of the x-intercept. What is the

12 smallest integer value of x for which the graph of this line is in the fourth quadrant?
6. Napoleon's Theorem says that if equilateral triangles are constructed on the three
 sides of an arbitrary triangle, then the centers of these three triangles will themselves be vertices of an equilateral triangle. Beginning with $\triangle A B C$ in Figure 1 and constructing the three equilateral triangles exterior to $\triangle A B C$, what will the length of the sides of the equilateral triangle guaranteed by Napoleon's Theorem?

Figure 1

Team Event 2 Solutions

1. Line $A B: \quad 3 x+4 y=12$

Line $C D:-4 x+3 y=0$
Solve to get $x=\frac{36}{25}, y=\frac{48}{25}$
2. Line $A B$ in normal form:

$$
\frac{3}{5} x+\frac{4}{5} y=\frac{12}{5}
$$

A line 11 to $A B, 3$ units below the origin, in normal form:

$$
\begin{aligned}
& \frac{3}{5} x+\frac{4}{5} y=-3, \text { or } \\
& 3 x+4 y=-15
\end{aligned}
$$

3. Let $\alpha=\angle C A B, \beta=\angle A B C$.

$$
\begin{aligned}
& \tan \frac{\alpha}{2}=\sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}=\sqrt{\frac{1-4 / 5}{1+4 / 5}}=\frac{1}{3} \\
& \tan \frac{\beta}{2}=\sqrt{\frac{1-\cos \beta}{1+\cos \beta}}=\sqrt{\frac{1-3 / 5}{1+3 / 5}}=\frac{1}{2} \\
& \text { slope } A E=-\tan \frac{\alpha}{2}=-\frac{1}{3} \\
& C
\end{aligned}
$$

Let the extension of $B E$ intersect $C A$ at F, forming $\angle A F E$

$$
\begin{aligned}
\tan (\angle A F E) & =-\tan \angle C F E=-\cot \frac{\beta}{2} \\
& =-\frac{1}{\tan \beta / 2}=-2
\end{aligned}
$$

slope of $F E=-2$

$$
A E: \quad y=-\frac{1}{3}(x-4)
$$

Line FE: $\quad y-3=-2 x$
Solve $\left\{\begin{array}{r}x+3 y=4 \\ 2 x+y=3\end{array} \quad E(1,1)\right.$
5. Let the y-intercept be b; then the x-intercept is 3 b . Substitute

The center is of the form $(-2 k-5, k)$ and its distance from $(-5,-4)$ is $\sqrt{20}$

$$
[-2 k-5-(-5)]^{2}+[k-(-4)]^{2}=20
$$

Solving gives $k=\frac{2}{5}$ or $k=-2$. Possible centers are $\left(-\frac{24}{5}, \frac{2}{5}\right)$ or $(-1,-2)$. Only $(-1,-2)$ gives a point of tangency in $1 s^{t}$ quad.

$$
\begin{aligned}
& V R=\frac{1}{3}\left[\frac{3}{2} \sqrt{3}\right]=\frac{\sqrt{3}}{2} \\
& R S=\frac{1}{2} C A=2 \\
& V S=V R+R S=\frac{\sqrt{3}+4}{2} \\
& U T=\frac{1}{3}[2 \sqrt{3}]=\frac{2 \sqrt{3}}{3} \\
& T S=\frac{1}{2} C B=\frac{3}{2} \\
& U S=U T+T S=\frac{4 \sqrt{3}+9}{6}
\end{aligned}
$$

$$
\begin{aligned}
v u^{2} & =v s^{2}+u s^{2} \\
& =\left(\frac{\sqrt{3}+4}{2}\right)^{2}+\left(\frac{4 \sqrt{3}+9}{6}\right)^{2} \\
& =\frac{3+8 \sqrt{3}+16}{4}+\frac{48+72 \sqrt{3}+81}{36} \\
& =\frac{57+24 \sqrt{3}}{12}+\frac{43+24 \sqrt{3}}{12} \\
v u^{2} & =\frac{100+48 \sqrt{3}}{12}=\frac{25+12 \sqrt{3}}{3} \\
v u & =3.907
\end{aligned}
$$

$$
x=\frac{5}{2} ; y=3 \text { into } \frac{x}{3 b}+\frac{y}{b}=1 \text { to get } b=\frac{23}{6}
$$

The smallest integer greater than $3 b=\frac{23}{2}$ is 12 .

