

2005-06 Event 1A

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

1. Express as the quotient of two relatively prime integers the expression

$$\left[\frac{1}{12} + \frac{1}{15} + \frac{1}{20}\right]^{-1}$$

- 2. The shirt I was interested in was on a table with a sign, "Take 25% of the marked price." I was about to buy it when the clerk told me that the next day there was to be a sale that would advertise, "Take 1/3 off the already reduced price." If the shirt was originally marked \$37.80, how much will it cost the next day?
- 3. Find the least common multiple of 108, 84, and 147.
- 4. The integer N = 10100 is expressed using base b > 1. Express N as a product of two integers, expressed as polynomials in b, that are both greater than 1.

Name_

2005-06 Event 1B

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

- 1. Two regular hexagons *ABCDEF* and *DGHIJK* (Figure 1) are positioned so that *A*, *D*, and *I* are collinear. If KD = 2DE, find the measure in degrees of $\angle KED$.
- 2. In isosceles $\triangle ABC$ (Figure 2), the trisectors of the angle at A meet the bisectors of the angles at B and C in points D and E. If $m(\angle BAC) = 36^\circ$, what is $m(\angle BDE)$?
- 3. In Figure 1, extend *AF* and *IJ* to meet at M. Given that *AF* = *a*, what (in terms of *a*) is the length of *MK*?
- 4. Again refer to Figure 2, but this time do not assume that $\angle A$ is trisected, or that the base angles are bisected. Rather, assume that $\triangle ABC$ is equilateral, that $\triangle ADE$ is isosceles with a base *DE* of length 1, and that both $\triangle ADB$ and $\triangle AEC$ are isosceles. If AB = 5, how long is AD?

Figure 2

Name_

_Team

2005-06 Event 1C

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

- 1. Figure 1 shows the graph of $y = a \sin bx$. What is *b*?
- 2. Again refer to the graph $y = a \sin bx$ in Figure 1. Given that the units on the x and y axes are the same, and that a is an integer, what is the value of a?
- 3. In isosceles $\triangle ABC$ (Figure 3), the trisectors of the angle at A meet the bisectors of the angles at B and C in points D and E. A perpendicular is dropped from D to a point F on AB. If $m(\angle BAC) = 36^\circ$ and AB = 5, how long is AF?
- 4. Refer again to Figure 3 and the information given in Problem 3. How long is *DE*?

2005-06 Event 1D

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

- 1. Find the roots of $(2x+1)^2 = \frac{3}{4}$
- 2. What will be the remainder if $2x^5 3x^4 4x^3 5x^2 6x 7$ is divided by x 3?
- 3. Find the coordinates (both of them) of the lowest point on the graph of $9x^2 + 24x 72y 164 = 0$.
- 4. The coefficients of $z^3 + az^2 + bz + c = 0$ are all real numbers. The three roots z_1 , z_2 , and z_3 of the equation satisfy

$$z_1 z_2 z_3 = 1$$
 and $z_1 + z_2 + z_3 = \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3}$

For what choices of *a* will there be some non-real complex roots?

Minnesota State High School Mathematics League * Team Event

2005-06 Meet 1

Each question is worth 4 points. Team members may cooperate in any way, but at the end of twenty minutes, one set of answers is to be submitted. Put answers on the lines provided.

- 1. Express $\left[\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ac}\right]^{-1}$ as a single quotient.
- 2. The integer M = 100011 is expressed using base b > 1. Express M as a product of two integers, expressed as polynomials in b, that are both greater than 1.
- 3. Find to the nearest tenth of a degree all angles θ , $0 \le \theta < 360$, that satisfy $15\tan^2\theta \tan\theta \sec\theta 6\sec^2\theta = 0$

4. In $\triangle ABC$, $\angle A = 40^\circ$, $\angle B = 25^\circ$, and AC = 3. What is the area of $\triangle ABC$?

- 5. For distinct real numbers *a*, *b*, and *c*, division of the polynomial p(x) by x a leaves a remainder of *a*; division of the polynomial p(x) by x b leaves a remainder of *b*; division of the polynomial p(x) by x c leaves a remainder of *c*. What, in simplest form, is the remainder when p(x) is divided by (x-a)(x-b)(x-c)? Hint: rephrase the question. Let p(x) = (x-a)(x-b)(x-c)q(x) + r(x). Find r(x) in simplest form.
- 6. Given: x + y + z = 0; x² + y² + z² = 36; x³ + y³ + z³ = 105
 One of the unknowns, say x, (by symmetry, it could be any one of them) is real; the other two are complex. Find x.

Team