

Minnesota State High School Mathematics League

 Individual Event
2005-06 Event 1A

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

1. Express as the quotient of two relatively prime integers the expression

$$
\left[\frac{1}{12}+\frac{1}{15}+\frac{1}{20}\right]^{-1}
$$

2. The shirt I was interested in was on a table with a sign, "Take 25% of the marked price." I was about to buy it when the clerk told me that the next day there was to be a sale that would advertise, "Take $1 / 3$ off the already reduced price." If the shirt was originally marked $\$ 37.80$, how much will it cost the next day?
3. Find the least common multiple of 108,84 , and 147.
4. The integer $N=10100$ is expressed using base $b>1$. Express N as a product of two integers, expressed as polynomials in b, that are both greater than 1.
\qquad

Minnesota State High School Mathematics League

 Individual Event
2005-06 Event 1B

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

1. Two regular hexagons $A B C D E F$ and $D G H I J K$ (Figure 1) are positioned so that A, D, and I are collinear. If $K D=2 D E$, find the measure in degrees of $\angle K E D$.
2. In isosceles $\triangle A B C$ (Figure 2), the trisectors of the angle at A meet the bisectors of the angles at B and C in points D and E. If $m(\angle B A C)=36^{\circ}$, what is $m(\angle B D E)$?
3. In Figure 1, extend $A F$ and II to meet at M. Given that $A F=a$, what (in terms of a) is the length of MK?
4. Again refer to Figure 2, but this time do not assume that $\angle A$ is trisected, or that the base angles are bisected. Rather, assume that $\triangle A B C$ is equilateral, that $\triangle A D E$ is isosceles with a base $D E$ of length 1 , and that both $\triangle A D B$ and $\triangle A E C$ are isosceles. If $A B=5$, how long is $A D$?

Figure 1

Figure 2

Name Team \qquad

Minnesota State High School Mathematics League Individual Event

2005-06 Event 1C

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

1. Figure 1 shows the graph of $y=a \sin b x$. What is b ?
2. Again refer to the graph $y=a \sin b x$ in Figure 1. Given that the units on the x and y axes are the same, and that a is an integer, what is the value of a ?
3. In isosceles $\triangle A B C$ (Figure 3), the trisectors of the angle at A meet the bisectors of the angles at B and C in points D and E. A perpendicular is dropped from D to a point F on $A B$. If $m(\angle B A C)=36^{\circ}$ and $A B=5$, how long is $A F$?
4. Refer again to Figure 3 and the information given in Problem 3. How long is $D E$?

Figure 3

Name \qquad Team \qquad

Minnesota State High School Mathematics League Individual Event

2005-06 Event 1D

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

1. Find the roots of $(2 x+1)^{2}=\frac{3}{4}$
2. What will be the remainder if $2 x^{5}-3 x^{4}-4 x^{3}-5 x^{2}-6 x-7$ is divided by $x-3$?
3. Find the coordinates (both of them) of the lowest point on the graph of $9 x^{2}+24 x-72 y-164=0$.
4. The coefficients of $z^{3}+a z^{2}+b z+c=0$ are all real numbers. The three roots z_{1}, z_{2}, and z_{3} of the equation satisfy

$$
z_{1} z_{2} z_{3}=1 \quad \text { and } \quad z_{1}+z_{2}+z_{3}=\frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}
$$

For what choices of a will there be some non-real complex roots?
\qquad

Minnesota State High School Mathematics League

- Team Event

2005-06 Meet 1

Each question is worth 4 points. Team members may cooperate in any way, but at the end of twenty minutes, one set of answers is to be submitted. Put answers on the lines provided.

1. Express $\left[\frac{1}{a b}+\frac{1}{b c}+\frac{1}{a c}\right]^{-1}$ as a single quotient.
2. The integer $M=100011$ is expressed using base $b>1$. Express M as a product of two integers, expressed as polynomials in b, that are both greater than 1 .
3. Find to the nearest tenth of a degree all angles $\theta, 0 \leq \theta<360$, that satisfy

$$
15 \tan ^{2} \theta-\tan \theta \sec \theta-6 \sec ^{2} \theta=0
$$

4. In $\triangle A B C, \angle A=40^{\circ}, \angle B=25^{\circ}$, and $A C=3$. What is the area of $\triangle A B C$?
5. For distinct real numbers a, b, and c, division of the polynomial $p(x)$ by $x-a$ leaves a remainder of a; division of the polynomial $p(x)$ by $x-b$ leaves a remainder of b; division of the polynomial $p(x)$ by $x-c$ leaves a remainder of c. What, in simplest form, is the remainder when $p(x)$ is divided by $(x-a)(x-b)(x-c)$? Hint: rephrase the question. Let $p(x)=(x-a)(x-b)(x-c) q(x)+r(x)$. Find $r(x)$ in simplest form.
6. Given: $x+y+z=0 ; \quad x^{2}+y^{2}+z^{2}=36 ; \quad x^{3}+y^{3}+z^{3}=105$

One of the unknowns, say x, (by symmetry, it could be any one of them) is real; the other two are complex. Find x.

Team

