

Individual Event

2003-04 Event 1A

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

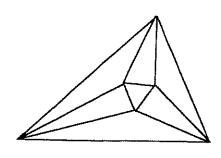
- 14
- 1. The decimal 1.545454... can be expressed as $\frac{17}{11}$, the quotient of two relatively prime integers. Express 1.272727... as the quotient of two relatively prime integers.
- When a group of Mathleaguers went to a Twins game last summer, we got with our tickets a brochure saying that with each ticket we could buy a coupon for \$3.50 that would be good for a hot dog and a soft drink. This, it said, would be a saving of more than 30% off the regular price. The regular price for a hot dog and soft drink was \$5.75. What (to the nearest tenth of a percent) was the actual saving?
 - 3. Let $0 < a < \frac{1}{4} < \frac{3}{4} < b < 1$. Use a similar string of inequalities to order from smallest to largest \sqrt{a} , a^2 , $\frac{1}{a}$, \sqrt{b} , b^2 , $\frac{1}{b}$,

 $a^2 < \sqrt{a} < b^2 < \sqrt{b} < \frac{1}{b} < \frac{1}{a}$

- 4. The set of three positive integers {15, 25, *k* } has a greatest common divisor of 5 and a least common multiple of 450. What is the sum of the possible values for the integer *k*?
 - 1. Set x = .272727... $100 \times = 27 + \times$ $\times = \frac{27}{99} = \frac{3}{11}$ $1 + x = \frac{11 + 3}{11} = \frac{14}{11}$
 - 2. If p is the actual percent saved p(5.75) = 2.25 $p = \frac{225}{575} = .391$
- 3. $a < \frac{1}{4} \Rightarrow \sqrt{a} < \frac{1}{2} \text{ and } b > \frac{3}{4} \Rightarrow b^2 > \frac{9}{16} > \frac{1}{2}$ $a < b \Rightarrow \frac{1}{a} > \frac{1}{b} \text{ and } b < 1 \Rightarrow \frac{1}{b} > 1$ $\therefore a^2 < \sqrt{a} < b^2 < \sqrt{b} < \frac{1}{b} < \frac{1}{a}$
- 4. $lcm = 450 = 3^2.5^2.2$.

 K must have one factor of 2, two factors of 3; k must have one factor of 5

 (since gcd = 5), and it might have two. $k = 2.3^2.5$ or $k = 2.3^2.5^2$ sum = $2.3^2.5 + 2.3^2.5^2 = 540$

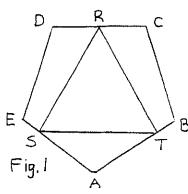


Individual Event

2003-04 Event 1B

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

- 1. Figure 1 shows an equilateral ΔRST inscribed in a regular pentagon ABCDE in such a way that R is the midpoint of \overline{CD} and $\overline{ST} \parallel \overline{CD}$. What is the measure of $\angle ATS$?
 - 2. In Figure 1, what is the measure of $\angle ESR$?
- 3. In an isosceles $\triangle ABC$ with AC=BC, let \overline{CD} and \overline{CE} be the angle trisectors of $\angle C$, and let \overline{AF} and \overline{AG} be the angle trisectors of $\angle A$ (Figure 3). Let \overline{AF} intersect \overline{CD} at K and \overline{CE} at L. If $\angle A=54^\circ$, what will be the measure of $\angle KLE$?
- 4. If in Figure 3, we also draw the angle trisectors of $\angle B$ and let R, S, and T be the points where pairs from adjacent vertices intersect (as in the logo at the top of the page), what will be the measure of $\angle ART$?

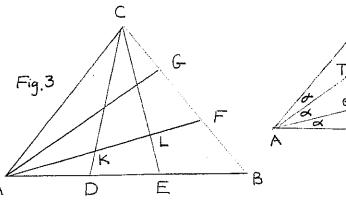


1.
$$\angle A = \frac{3(180)}{5} = 108^{\circ}$$

 $\angle ATS = \frac{1}{2} [180 - 108] = 36^{\circ}$

2.
$$\angle ESR = 180 - (36 + 60) = 84^{\circ}$$

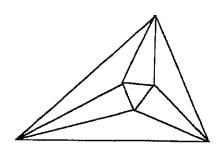
3. Let $\alpha = \frac{1}{3} \angle A = 18^{\circ}$, and let $\mathcal{V} = \frac{1}{3} \angle C = \frac{1}{3} [180 - 2(54)] = 24^{\circ}$



3. (continued)

$$\angle AFG = \propto + \angle B = 18 + 54 = 72^{\circ}$$

From $\triangle LFC$, $\angle CLF = 180 - (72 + 7) = 84^{\circ}$
 $\therefore \angle KLE = 84^{\circ}$



Individual Event

2003-04 Event 1C

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this

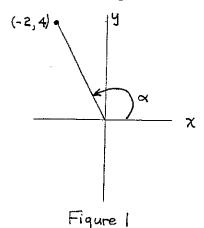
- $\frac{2}{\sqrt{5}}$ or $\frac{2\sqrt{5}}{5}$ 1. What is the sine of the second quadrant angle α shown in Figure 1?
- $\frac{-1}{\sqrt{5}}$ or $\frac{-\sqrt{5}}{5}$ 2. For the angle α shown in Figure 1, what is $\sin\left(\alpha + \frac{\pi}{2}\right)$?
 - 3. Express $\sqrt{\frac{1-\sin x}{1+\sin x}}$ as the difference of two trigonometric functions (such as

 $\sin x - \csc x$), given that x is in the second quadrant.

tanx - sec x

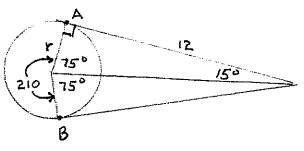
Two tangents to a circle, each of length 12, intersect to form an angle of 30°. If the tangents meet the circle at points A and B, what is the length, accurate to three places to the right of the decimal, of the long arc \widehat{AB} ?

4.



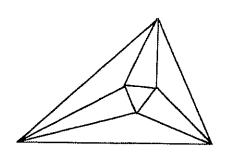
- 1. $\sin \alpha = \frac{4}{\sqrt{4+16}} = \frac{2}{\sqrt{5}}$
- 2. $\sin\left(\alpha + \frac{\pi}{2}\right) = \cos\alpha = \frac{-2}{2\sqrt{5}}$

3.
$$\sqrt{\frac{(1-\sin x)(1-\sin x)}{(1+\sin x)(1-\sin x)}} = \frac{1-\sin x}{\sqrt{\cos^2 x}}$$
$$= \frac{1-\sin x}{-\cos x} = -\sec x + \tan x$$



$$\tan 15^{\circ} = \frac{r}{12}$$
, so $r = 12 \tan 15^{\circ}$

$$\hat{AB} = \frac{210}{360} (2\pi r) = \frac{7}{12} (2\pi) 12 \tan 15^{\circ}$$
= 11.785



Individual Event

2003-04 Event 1D

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

All questions in this event refer to the polynomial $p(x) = 2x^2 + 2x + 3$

- What is the product of the roots of p(x) = 0?

The graph of y = p(x) intersects the graph of y = 5 - x in two points A and B. Give the coordinates (both of them) of both points.

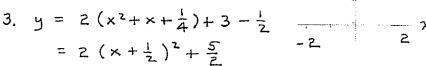
Of course these can be reversed: A(-2,7), $B(\frac{1}{2},\frac{9}{2})$

- 3. Write y = p(x) in the form $y k = 4a(x h)^2$. $y \frac{5}{2} = 4(\frac{1}{2})(x + \frac{1}{2})^2$
 - The equation $6x^4 + 10x^3 + 15x^2 + 8x + 3 = 0$ has two of the same roots as the equation p(x) = 0. For what second degree polynomial r(x) does r(x) = 0 have roots equal to the other two roots of the given 4th degree polynomial equation?
- $\Gamma(x) = 3x^2 + 2x + 1$

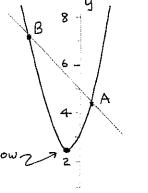
1. $x^2 + x + \frac{3}{2} = 0$ The product of the roots is $\frac{3}{2}$

 $2, 2x^2 + 2x + 3 = 5 - x$ $2x^{2} + 3x - 2 = 0$

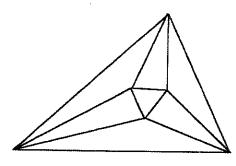
 $(2 \times -1)(\times +2) = 0$ $A\left(\frac{1}{2},\frac{q}{2}\right),\quad B\left(-2,7\right)$



The lowest point is $\left(-\frac{1}{7}, \frac{5}{5}\right)$



$$r(x) = 3x^2 + 2x + 1$$



Team Event

2003-04 Meet 1

Each question is worth 4 points. Team members may cooperate in any way, but at the end of twenty minutes, one set of answers is to be submitted. Put answers on the lines provided.

- 14, 976 1. The set of four positive integers {42, 54, 60, k} has a greatest common divisor of 6 and a least common multiple of 7560. What is the sum of the possible values for the integer k?
 - 2. Figure 2 shows a circle of radius r with a central angle θ , $0 \le \theta \le \frac{\pi}{2}$. The inequalities $Area(\Delta OBD) < Area(\sec tor OBD) < Area(\Delta OBC)$ can be used to show $f(\theta) < \theta < g(\theta)$ where $f(\theta)$ and $g(\theta)$ represent trigonometric functions. Write the inequality.

sin 0 < 0 < tan 0

3. Describe a good calculator window in which one can see a continuous part of the graph of $y = P(x) = 30x^3 - 121x^2 + 162x - 72$ that shows all the roots of P(x) = 0.

xmin= xmax= ymin= ymax=

Graders - This is intended to be an easy problem, rewarding those who use their calculator intelligently. See the solution sheet. 6

Give a numeric value for the continued fraction —

 $1 + \frac{6}{1 + \frac{6}{1$

- 5. Figure 5 shows the graph of a parabola $y = x^2 + bx + c$ having its lowest point at (m,n), n < 0. Express the roots of $x^2 + bx + c = 0$ in terms of m and n.
 - 6. Let $f(x) = 3x^2 2(a+b+c)x + (ab+ac+bc)$. Then $f\left(\frac{a+b}{2}\right)$ can be expressed as a

 $-\frac{1}{4}(a-b)^2$. rational number times the square of a term involving a and b. Do so.

Team_____

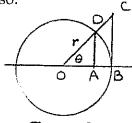


Figure 2

Team Event 1 Solutions

1.
$$\{2.3.7, 2.3^3, 2^2.3.5, k\}$$

has $\{9.c.d = 2.3, 1.c.m = 2^3.3^3.5.7\}$

g.c.d = 6 \Rightarrow k has factors of 2,3

1.c.m of the given numbers is

 $2^2.3^3.5.7$ k has a factor of 2^3 .

Possible values for k are

 $2^3.3$. $2^3.3^2$. $2^3.3^3$. 2^3 . $2^3.3^3$. 2^3

4. Let the given expression be x. Then
$$x = \frac{6}{1+x}; \quad x^2 + x - 6 = 0$$

$$(x - 2)(x + 3) = 0; \quad x = 2 \text{ or } x = -3$$
But clearly x > 0, so x = 2.

- 5. The equation in standard form is $4a (y-n) = (x-m)^{2}$ $y = n + \frac{1}{4a} (x^{2} 2mx + m^{2})$ Since the coefficient of x^{2} in the given equation is 1, 4a = 1 and the standard form is $y-n = (x-m)^{2}$ When y = 0, $x-m = \pm \sqrt{-n}$ $x = m \pm \sqrt{-n} \quad (n < 0)$
- 2. Area (ΔOAD) < Area (sector OBD) < Area (ΔOBC) $\frac{1}{2}(OB)(DA) < \frac{\theta}{2} r^2 < \frac{1}{2}(OB)(BC)$ $OB = r, DA = r SIM\theta, BC = r tan \theta$ $\therefore r^2 sin \theta < r^2 \theta < r^2 tan \theta$
- 3. Enter the parameters submitted into a calculator. Give credit if you see three roots between I and 1.6 (actually occur at $\frac{6}{5}$, $\frac{4}{3}$, $\frac{3}{2}$), and $\stackrel{?}{a}$ rise above the raxis between $\frac{6}{5}$ and $\frac{4}{3}$, and $\stackrel{?}{3}$ below the x-axis between $\frac{4}{3}$ and $\frac{3}{2}$. The window $1.0 \le x \le 1.6$, $-0.2 \le y \le 0.2$ (below)

xmin must be < 1.2 xmax must be > 1.5 ymin must be < -.05 ymax must be > .04

works well,

6.
$$f\left(\frac{a+b}{2}\right) = 3\left(\frac{a+b}{2}\right)^2 - 2(a+b+c)\frac{a+b}{2} + ab + ac + bc$$

$$= \frac{3}{4}(a+b)^2 - (a+b)^2 - ac - bc + ab + ac + bc$$

$$= -\frac{1}{4}(a^2 + 2ab + b^2) + ab = -\frac{1}{4}(a^2 - 2ab + b^2)$$

$$= -\frac{1}{4}(a-b)^2$$