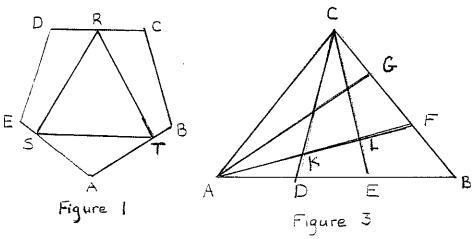

Individual Event

2003-04 Event 1A

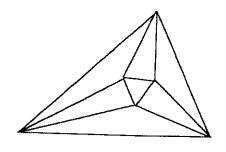
The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

- 1. The decimal 1.545454... can be expressed as $\frac{17}{11}$, the quotient of two relatively prime integers. Express 1.272727... as the quotient of two relatively prime integers.
 - 2. When a group of Mathleaguers went to a Twins game last summer, we got with our tickets a brochure saying that with each ticket we could buy a coupon for \$3.50 that would be good for a hot dog and a soft drink. This, it said, would be a saving of more than 30% off the regular price. The regular price for a hot dog and soft drink was \$5.75. What (to the nearest tenth of a percent) was the actual saving?
 - 3. Let $0 < a < \frac{1}{4} < \frac{3}{4} < b < 1$. Use a similar string of inequalities to order from smallest to largest \sqrt{a} , a^2 , $\frac{1}{a}$, \sqrt{b} , b^2 , $\frac{1}{b}$,
- 4. The set of three positive integers {15, 25, *k* } has a greatest common divisor of 5 and a least common multiple of 450. What is the sum of the possible values for the integer *k*?

	- Culi
--	--------



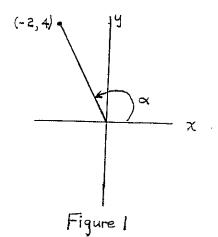
Individual Event


2003-04 Event 1B

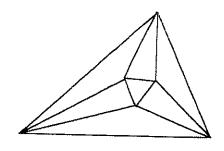
The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

- 1. Figure 1 shows an equilateral $\triangle RST$ inscribed in a regular pentagon ABCDE in such a way that R is the midpoint of \overline{CD} and $\overline{ST} \parallel \overline{CD}$. What is the measure of $\triangle ATS$?
- 2. In Figure 1, what is the measure of $\angle ESR$?
 - _3. In an isosceles $\triangle ABC$ with AC=BC, let \overline{CD} and \overline{CE} be the angle trisectors of $\angle C$, and let \overline{AF} and \overline{AG} be the angle trisectors of $\angle A$ (Figure 3). Let \overline{AF} intersect \overline{CD} at K and \overline{CE} at L. If $\angle A = 54^\circ$, what will be the measure of $\angle KLE$?
- _4. If in Figure 3, we also draw the angle trisectors of $\angle B$ and let R, S, and T be the points where pairs from adjacent vertices intersect (as in the logo at the top of the page), what will be the measure of $\angle ART$?

Name	T'
	_leam



Individual Event

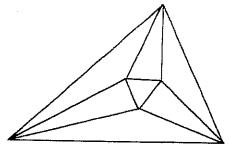

2003-04 Event 1C

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event.

- _1. What is the sine of the second quadrant angle lpha shown in Figure 1?
- 2. For the angle α shown in Figure 1, what is $\sin\left(\alpha + \frac{\pi}{2}\right)$?
- 3. Express $\sqrt{\frac{1-\sin x}{1+\sin x}}$ as the difference of two trigonometric functions (such as $\sin x \csc x$), given that x is in the second quadrant.
- 4. Two tangents to a circle, each of length 12, intersect to form an angle of 30°. If the tangents meet the circle at points A and B, what is the length, accurate to three places to the right of the decimal, of the long arc \$\hat{AB}\$?

Name	Team	

Individual Event


2003-04 Event 1D

The first question is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this

All questions in this event refer to the polynomial $p(x) = 2x^2 + 2x + 3$

- What is the product of the roots of p(x) = 0?
- The graph of y = p(x) intersects the graph of y = 5 x in two points A and B. Give the coordinates (both of them) of both points.
- Write y = p(x) in the form $y k = 4a(x h)^2$.
- The equation $6x^4 + 10x^3 + 15x^2 + 8x + 3 = 0$ has two of the same roots as the equation p(x) = 0. For what second degree polynomial r(x) does r(x) = 0 have roots equal to the other two roots of the given 4th degree polynomial equation?

Name	Team
	r carr

Team Event

2003-04 Meet 1

Each question is worth 4 points. Team members may cooperate in any way, but at the end of twenty minutes, one set of answers is to be submitted. Put answers on the lines provided.

- 1. The set of four positive integers {42, 54, 60, *k* } has a greatest common divisor of 6 and a least common multiple of 7560. What is the sum of the possible values for the integer *k*?
- 2. Figure 2 shows a circle of radius r with a central angle θ , $0 \le \theta \le \frac{\pi}{2}$. The inequalities $Area(\Delta OBD) < Area(\sec tor OBD) < Area(\Delta OBC)$ can be used to show $f(\theta) < \theta < g(\theta)$ where $f(\theta)$ and $g(\theta)$ represent trigonometric functions. Write the inequality.

- 5. Figure 5 shows the graph of a parabola $y = x^2 + bx + c$ having its lowest point at (m,n), n < 0. Express the roots of $x^2 + bx + c = 0$ in terms of m and n.
- 6. Let $f(x) = 3x^2 2(a+b+c)x + (ab+ac+bc)$. Then $f\left(\frac{a+b}{2}\right)$ can be expressed as a rational number times the square of a term involving a and b. Do so.

Team_____

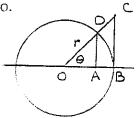


Figure 2